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A Note to Our Readers

We are excited to present the early release of Part I of our book “Optimizing

with Column Generation: advanced Branch-Cut-and-Price Algorithms”. While the

book’s ultimate goal, as suggested by its subtitle, is to describe cutting-edge tech-

niques in these algorithms, this objective is primarily addressed in the forthcoming

Part II. However, we feel that the completed first part, covering the fundamentals of

Column Generation and representing nearly two years of dedicated work, is already

a valuable contribution to the community.

The intentions of this early release go further. We have set up a GitHub repos-

itory (https://OptimizingWithColumnGeneration.github.io) where readers can ask

for help from other readers, share solutions to exercises (perhaps coded in different

programming languages), and have discussions. They may also report errors and

suggest topics to be covered in Part II. By observing that community feedback, we

believe the final book will be significantly better than if written in isolation.

Thank you for your interest and support!

August 29th, 2024
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Notation

Matrices are represented by uppercase boldface letters. Vectors are represented by

lowercase boldface letters. Unless stated otherwise, n-dimensional vectors are col-

umn vectors associated with points in the Rn space. Yet, some vectors will be defined

as row vectors. A 1×n row vector may be defined as belonging to R1×n and an m×n
matrix as belonging to Rm×n. Matrices and vectors are notated with parentheses

(instead of brackets), and the symbol ⊺ denotes matrix transposition. The j-th col-

umn in matrix A is denoted as aj and the element in its i-row and j-th column

is denoted as aij (uppercase bold A becoming lowercase bold a and lowercase a).

The i-th element of a vector p (either a row or column vector) is denoted as pi.

Sometimes a vector p is associated with elements of a set N and its elements may

also be denoted as pe, for e ∈ N . In that context, the incidence vector of N ′ ⊆ N ,

denoted as χ(N ′), is the |N |-dimensional binary vector p where pe = 1 if and only

if e ∈ N ′. When we have variables or vectors of variables, the symbols ∗, ˆ, ¯, ′, and
′′ may be used to refer to specific values for those variables. In particular, the star

symbol ∗ is preferred to indicate some specific optimal solution. The symbols 0 and

1 represent a vector with appropriate dimensions having 0 and 1, respectively, in all

its elements. The p-norm of an n-dimensional vector x is ||x||p = (
∑n

i=1 |xi|p)1/p;
||x|| denotes the 2-norm (a.k.a. Euclidean norm).

Sets are represented by uppercase letters. An exception is the symbol [·] that
represents the set of integer numbers from 1 until its positive integer argument.

For example, [n] = {1, . . . , n}. Using that notation, we write summations like
n∑

j=1

as
∑
j∈[n]

, which saves vertical space in displayed formulas. The standard sets are R

(real numbers), R+ (non-negative real numbers), R− (non-positive real numbers), Z
(integer numbers), Z+ (non-negative integer numbers), and B = {0, 1}. The interval
{x ∈ R | a ≤ x ≤ b} may be denoted as [a, b]. The standard set operators ∈ (in),

/∈ (not in), ∪ (union), ∩ (intersection), \ (set minus), ⊂ (subset), ⊃ (superset) and

| · | (set cardinality) are used. If z∗ is defined as min f(x) subject to x ∈ X, then,

xix
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by convention, z∗ = ∞ if X = ∅ and z∗ = −∞ if the minimum is unbounded. If

z∗ is finite, then argmin f(x) s.t. x ∈ X denotes an arbitrary x∗ ∈ X such that

f(x∗) = z∗. If z∗ = max f(x) s.t. x ∈ X, then z∗ = −∞ if X = ∅ and z∗ =∞ if the

maximum is unbounded; while argmax is defined similarly to argmin. A setX ⊆ Rn

or X ⊆ R1×n is convex when, for every x,y ∈ X, and α ∈ [0, 1], (αx+(1−α)y) ∈ X.

A function f : X 7→ R, where X ⊆ Rn or X ⊆ R1×n is a convex set, is convex

when, for every x,y ∈ X, and α ∈ [0, 1], f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

By reversing the sense of the previous inequality, we obtain the condition to classify

function f as concave. When the previous inequalities hold as strict inequalities, we

may add the qualifier strictly to convex or concave.

Graphs are notated as follows. An undirected graph G = (V,E) is supposed to

be simple (without parallel edges or loops), the elements of the edge-set E are sets

of the form e = {u, v}, such that u, v ∈ V . For a vertex-set S ⊆ V , its edge cutset

is δ(S) = {e ∈ E : |e∩S| = 1} and its interior edge set is E(S) = {e ∈ E : e ⊆ S}.
In contrast, directed graphs are not always simple. For a directed graph G = (V,A)

without parallel arcs, the arc-set A has as elements 2-tuples (a.k.a. ordered pairs)

a = (u, v), such that u, v ∈ V . Otherwise, arcs in A are represented by 3-tuples

a = (u, v, j), where the third element j is an identifier for differentiating parallel

arcs between vertices u and v. In that case, the standard graph operators over a

vertex-set S ⊆ V are δ+(S) = {a = (u, v, ·) ∈ A : u ∈ S, v /∈ S}, δ−(S) = {a =

(u, v, ·) ∈ A : u /∈ S, v ∈ S}, and A(S) = {a = (u, v, ·) ∈ A : u, v ∈ S}. Given

an undirected graph G = (V,E), we denote by GD = (V,A) the directed graph

obtained by replacing every edge {u, v} ∈ E by a pair of opposite arcs (u, v) and

(v, u).

The class P is formed by the decision problems that can be solved in determinis-

tic polynomial time. A decision problem is said to be NP-complete if: (i) it belongs

to class NP (the decision problems that can be solved in non-deterministic poly-

nomial time, or, equivalently, the decision problems where a “yes” answer always

has a certificate that can be checked in polynomial time), and (ii) it is NP-hard
(a problem that if solved in deterministic polynomial time would imply that all

problems in NP can also be solved in deterministic polynomial time). This book

deals with optimization problems, not decision problems. A widespread and time-

honored convention [Garey and Johnson, 1979] is that the optimization problems

whose decision versions are NP-complete, like the Traveling Salesperson Problem

(TSP), should be classified as NP-hard, never as NP-complete. That convention

xx
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is certainly correct but has the following drawback: problems that are likely to be

much harder than the TSP, even proved undecidable problems, are also NP-hard.
There is no standard notation for differentiating between the “ordinary NP-hard
optimization problems” from some harder optimization problems that are also con-

sidered in this book. For example, some separation problems where only checking

if a separated cut is indeed valid is already an NP-hard problem. Two authors of

this book suggested defining “optimization problem X is NP-complete” as a short-

hand to “the decision version of optimization problem X is NP-complete”. That

suggestion made a third author cringe in horror. So, we decided to abide by the

convention. However, whenever the decision version of some NP-hard optimization

problem is not NP-complete that will be indicated. However, we may commit the

abuse of saying that an optimization problem X belongs to P if its decision version

belongs to P.
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Introduction

Column Generation is a method to solve linear programming problems with a very

large number of variables. It dynamically generates variables (and the corresponding

matrix columns, hence the name) by solving auxiliary optimization problems known

as pricing subproblems. It can also be very effective in integer programming, forming

the backbone of algorithms like Branch-and-Price and Branch-Cut-and-Price. This

technique has been successfully applied to many types of vehicle routing, cutting and

packing, airline planning, timetabling, crew scheduling, graph coloring, clustering,

lot sizing, and machine scheduling, among other problems. In many of those cases,

it vastly outperforms all competing methods including compact formulations solved

by general MIP solvers and specialized Branch-and-Cut algorithms.

Column Generation is a thriving field, with hundreds of relevant papers pub-

lished annually. The current most advanced Branch-Cut-and-Price algorithms in-

corporate several recently proposed elements and are much more powerful than the

typical Branch-and-Price algorithms of 20 years ago. All major Operations Research

conferences have sessions on it and there is even a periodical Column Generation

Workshop. Column Generation also found its way into the industry, where it is

routinely applied (usually as part of highly effective heuristics, optimality being a

secondary concern) for handling complex optimization problems where many mil-

lions of dollars are at stake.

Yet, paradoxically, Column Generation is still a well-kept secret.

Every time we receive new students who are already acquainted with linear and

integer programming but want to start working with Branch-Cut-and-Price algo-

rithms, their first question is: “Which book should I read?”. Our answer: “There

are chapters and surveys that you definitely must read and will provide a nice

overview of Column Generation. However, to understand the techniques used in

the advanced Branch-Cut-and-Price algorithms, you will also need to read many

research articles.” This is not the ideal. Research articles are not beginner-friendly,

they assume a lot of previous knowledge. Moreover, each article uses its own mathe-

xxiii



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

matical notation. Even some basic concepts and nomenclature are not standardized,

which can be confusing.

This educational barrier is particularly serious due to another major obstacle:

computational implementation. While current commercial MIP solvers (in alpha-

betic order: COPT, CPLEX, Gurobi and Xpress) offer superior performance and

convenient interfaces for implementing Branch-and-Cut algorithms, at the time of

writing, they do not support Branch-and-Price or Branch-Cut-and-Price. While

existing open-source frameworks (like ABACUS, BaPCod, Coluna, DIP, and SCIP

GCG) may help a lot with building those advanced algorithms, they still have serious

limitations that may force their users to code if they want to achieve state-of-the-art

performance.

As a result of these difficulties, the technique is much less used than it could

be. The primary goal of this book is to lower these educational barriers and encour-

age wider application of Column Generation, not only organizing and summarizing

existing literature but also sharing insights from decades of practical experience, of-

fering unique guidance not found elsewhere. We aim to provide not just theoretical

explanations, but also advice on effective implementation. Throughout the book,

readers will find selected examples and case studies that demonstrate the potential

of applying column generation in diverse scenarios. We also provide context and

commentary on how the field has evolved, highlighting key innovations and shifts

in thinking.

Before explaining the book’s organization, let us consider two seemly contradic-

tory quotes:

“If you can’t explain it simply, you don’t understand it well enough.”

— Folklore, often apocryphally attributed to Albert Einstein or Richard

Feynman

“If I could explain it to the average person, it wouldn’t have been

worth the Nobel Prize!” — What Feymann really said

Both quotes contain elements of truth. We did our best efforts to make this book sim-

ple and accessible to its target audience which not only includes fellow researchers

but also students (even undergrads, if sufficiently motivated) and optimization prac-

titioners in the industry. Those efforts also align with our view that mathematical

complexity is not always required for rigor and is not necessarily an indicator of
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mathematical depth. Yet, there are limits to the simplicity. We do not claim that

column generation is as difficult as quantum electrodynamics, but the subject is

extensive and some points in it are subtle. There are advanced concepts that can

only be understood after more basic material is mastered. The proposed book orga-

nization is intended to avoid overburdening the reader with too much information

at once. Its first level is the division into two parts:

• Part I — Column Generation Basics — comprises five chapters covering the

fundamental principles of Column Generation. Those chapters are devised

to be read in sequence. This part is more beginner-friendly, with concepts

illustrated by detailed numerical examples. All mathematical proofs are short

and relatively simple.

• Part II — Topics in Column Generation — consists of eight chapters. Some of

those chapters present the more advanced techniques that play a crucial role

in state-of-the-art Branch-Cut-and-Price algorithms. Part II assumes that the

reader is familiar with the material in Part I. Otherwise, its chapters can be

read in any order, according to the interests of the reader.

The second level of organization is intra-chapter. Each chapter contains:

• A main text, where the most essential material is developed. A chapter is

divided into sections and subsections that are intended to be read in sequence.

Some of those sections are case studies. The main text of a chapter concludes

with a boxed text summarizing its contents and implications, in a less formal

language.

• A series of notes. A few of these are brief, merely providing appropriate credit

for the results referred to in the main text. However, most notes are not so

brief and present important content not included in the main text to avoid

overloading it. Some notes even take the form of mini-articles, providing more

personal perspectives from the authors on specific topics or in-depth historical

explorations. Notably, Note 4.10 is about our “rediscovery” while writing this

book of the first Column Generation algorithm, published (in Russian) in 1951

and largely unknown in the Western world. Notes may be read in any order

and may be skipped in the first reading of the chapter.
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• A list of exercises. There are Numerical Exercises involving the application of

the learned techniques to toy instances. The Conceptual Exercises are more

algebraic. In fact, some of those exercises provide additional content to the

book. For example, a certain theorem may have been proved by us only for

the most typical case. Proofs for other more generic cases may be asked as ex-

ercises. This can be doubly beneficial. First, it avoids burdening the main text

or the notes with more complex and technical proofs (needed to cover all the

cases) that may obscure their essential argument. Second, it gives the readers

an opportunity to actively test their understanding of the presented proofs by

generalizing them. There are some Open Exercises, characterized by not hav-

ing a single and clear correct answer, where we may ask the reader to discuss

some point. Finally, there are Project Exercises where we ask for complete

implementations of certain column generation based methods for some classic

problems. Unless the reader is willing to code extensively, it is recommended

to employ some framework for helping with those exercises. By the way, the

last chapter presents an overview of existing Column Generation frameworks.

The book has a companion website where answers to most exercises can be

found.

Overall, the authors view writing this book as a culmination of their years of

struggling research and hands-on experience, motivated by a deep passion for the

field. We hope that it will be useful to both newcomers seeking to learn column

generation and seasoned practitioners looking to deepen their understanding and

enhance their skills.
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Chapter 1

The Revised Simplex Algorithm

This chapter is not intended to work as a first exposition to linear programming.

There are several excellent textbooks for that, including Bertsimas and Tsitsiklis

[1997], Bazaraa et al. [2010], Vanderbei [2014]. The authors of this book are particu-

larly fond of Chvátal [1983]. We present here the revised simplex algorithm because

we believe that it provides the most accessible entrance door to column generation.

In 1947, George B. Dantzig developed the simplex algorithm for solving lin-

ear programming problems. In 1953, Dantzig himself proposed the revised simplex

algorithm. As in the original simplex, revised simplex assumes that the problem

to be solved is first converted into standard format: all variables should be non-

negative and all the remaining constraints are equalities. For example, the following

LP (Linear Program),

min z = 24x1 + 29x2 + 10x3 + 38x4

s.t. x1 + 4x2 + 5x3 = 60

2x2 + x3 ≤ 12

2x1 + x2 − x3 + 4x4 ≥ 10

x1, x2, x3, x4 ≥ 0,

can be put into standard format by adding slack variable x5 and surplus variable

x6:

min z = 24x1 + 29x2 + 10x3 + 38x4

s.t. x1 + 4x2 + 5x3 = 60

2x2 + x3 + x5 = 12

2x1 + x2 − x3 + 4x4 − x6 = 10

x1, x2, x3, x4, x5, x6 ≥ 0,

3
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A general LP in standard format can be written in matrix notation as:

min z = cx (1.1)

s.t. Ax = b (1.2)

x ≥ 0, (1.3)

where the objective function vector (a.k.a. cost vector) c has dimension 1 × n,

variable vector x has dimension n×1, constraint coefficient matrix A has dimension

m × n, and Right Hand Side (RHS) vector b has dimension m × 1. In the above

example, the matrices are:

c =
(
24 29 10 38 0 0

)

A =

1 4 5 0 0 0

0 2 1 0 1 0

2 1 −1 4 0 −1


x =



x1

x2

x3

x4

x5

x6


b =

60

12

10

 .

In a slight abuse of notation, we may omit the transpose symbol in text and write a

column vector like b as ( 60 12 10 ), rather than ( 60 12 10 )⊺. The objective function

value z is also known as the solution cost.

Definition 1.1: Basis, basic feasible solution, basic variables, degeneracy.

Let (B N) be a partition of the columns in A, such that B has dimension m×m

and is invertible. In those conditions, submatrix B is said to define a basis. Let

x = (xB xN ) and c = (cB cN ) be the corresponding partitions of components of

x and c. Variables in xB are basic variables, those in xN are non-basic variables.

The corresponding basic solution is x = (xB = B−1b xN = 0), which is feasible

if xB ≥ 0. A basic feasible solution is degenerate if at least one basic variable has

value zero.

Theorem 1.1: If an LP in standard format has optimal solutions then at least

one of those optimal solutions should be basic feasible.

4
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That fundamental result indicates that the search for an optimal solution can be

restricted to the finite set of basic feasible solutions. The Revised Simplex Algorithm

(RSA) provides a systematic way of moving from a basic feasible solution to another

basic feasible solution with a better cost (except perhaps in case of degeneracy) until

an optimal solution is found. The following definition is also needed for describing

the RSA.

Definition 1.2: Reduced cost. Let π = (π1 . . . πm) be the 1 ×m vector with

the dual variables associated to Constraints (1.2). The reduced cost of variable xj ,

j ∈ [n] = {1, . . . , n}, is defined as cj = cj − πaj , where aj is the j-th column of A.

The steps of RSA are now given:

RSA Step 1: Find an initial basic feasible solution.

In general, it may be difficult to find a feasible basis B from the columns of A.

Indeed, an LP may have no solutions at all, i.e., be infeasible, and that may not

be obvious. However, to easily execute Step 1, it is always possible to enlarge A

with additional columns corresponding to artificial variables with very large (see

Note 1.5) positive costs (or very large negative costs in case of a maximization LP).

For example, if b ≥ 0, B can be defined as an identity matrix corresponding to m

artificial variables.

In our example, suppose that it is discovered (no matter how) that variables x1,

x3, and x5 can be chosen to obtain a basic feasible solution, which is the unique

solution of the following linear system:

BxB =

1 5 0

0 1 1

2 −1 0


x1

x3

x5

 =

60

12

10

⇔


x1 +5x3 =60

x3 + x5 =12

2x1− x3 =10

⇒
x1 = 10

x3 = 10

x5 = 2.

The non-basic variables x2, x4, and x6 have value zero and z = 340.

RSA Step 2: Calculate the corresponding dual solution.

Step 2 relies on the simplex property that says that the basic variables should

have zero reduced cost. This means that π should satisfy cB − πB = 0 and,

therefore, is the unique solution of the linear system πB = cB.

5
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In our example, we have that:

πB =

π1

π2

π3


⊺1 5 0

0 1 1

2 −1 0

 =

24

10

0


⊺

⇔


π1 +2π3 =24

5π1 + π2− π3 =10

π2 = 0

⇒
π1 = 4

π2 = 0

π3 = 10.

RSA Step 3 (Pricing): Evaluate the reduced cost of the non-basic vari-

ables and choose the entering variable.

Variables with strictly negative reduced cost (strictly positive reduced cost in

case of a maximization LP) are eligible for entering the basis. If there is no eligi-

ble variable, the algorithm stops and the current basic feasible solution is optimal.

However, if that solution still contains some artificial variables (that may have been

introduced in Step 1) with a positive value, this actually means that the original

problem is infeasible.

In our example, the reduced costs are:

c2 = 29 − 4π1 − 2π2 − π3 = 3

c4 = 38 − 4π3 = −2
c6 = 0 + π3 = 10

This means that only x4 is eligible and should be chosen for entering the basis.

RSA Step 4: Calculate the direction of change.

The direction of change is the vector d that indicates how much each unit of

increase in the entering variable xj will change the current basic variables in order

to keep feasibility. In other words, direction d should be such that B(xB − dxj) +

ajxj = b, where aj is the column of A corresponding to the entering variable. As

BxB = b, BxB−Bdxj+ajxj = b is equivalent to Bdxj = ajxj . So, d is obtained

as the unique solution of the linear system Bd = aj .

In our example:

Bd =

1 5 0

0 1 1

2 −1 0


d1

d3

d5

 =

0

0

4

⇒ d =

20/11

−4/11
4/11

 .

RSA Step 5: Choose a variable to leave the basis.

One should increase the entering variable as much as possible. Its new value is

6
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given by xj = θ∗ = max{θ ∈ R : xB−θ ·d ≥ 0}. The variables that most limited θ∗

(i.e., those that will have value zero) are eligible to be chosen to leave the basis. If

no variable limits θ∗, the algorithm stops because the LP is unbounded. If θ∗ is finite

and greater than zero, then a new basic feasible solution with a better cost will be

obtained. If θ∗ = 0, which can only happen if the current solution is degenerate, the

resulting basic feasible solution will still have the same cost. By taking some care in

the choice of the leaving variable (for example, using the lexicographic anti-cycling

rule [Dantzig et al., 1955]), the resulting basic feasible solution will be new even in

case of degeneracy. So, it is possible to guarantee that the RSA stops in a finite

number of iterations.

In our example:

x4 = θ∗ = max θ such that

10

10

2

− θ

20/11

−4/11
4/11

 ≥ 0 =⇒ x4 = θ∗ = 5.5.

Variables x1 and x5 are eligible to leave the basis. Assume that x1 is chosen.

RSA Step 6: Update B and xB. Go to Step 2.

Basis B is updated by replacing the column of the leaving variable with the

column of the entering variable. As θ∗ and d are known, the new basic feasible

solution xB is readily calculated from the previous solution. Go to Step 2 for starting

a new RSA iteration.

In our example:

B =

0 5 0

0 1 1

4 −1 0

 xB =

x4

x3

x5

 =

5.5

12

0



The non-basic variables x1, x2, and x6 have value zero and z = 329. Step 2 in the

next RSA iteration would obtain dual variables π = ( 3.9 0 9.5 ). Step 3 would

calculate the following reduced costs: c1 = 1.1, c2 = 3.9, and c6 = 9.5. So, the

current solution is optimal. By the way, that optimal solution is degenerate.

Why Dantzig decided to introduce the RSA only a few years after the original

simplex algorithm? He realized that n is significantly larger than m in most LPs.

Note that in order to put an LP into standard format, each inequality is first trans-

7
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formed into an equality by introducing additional slack/surplus variables. Artificial

variables may further increase the value of n.

The RSA performs much better than Dantzig’s original simplex algorithm when

n is much larger than m. Each iteration of the original simplex algorithm executes

an expensive pivot operation that has a complexity that depends both on n and

m. On the other hand, the only step in a RSA iteration that has a complexity that

depends on n is Step 3 (pricing). The pricing step is a straightforward evaluation

of n−m linear expressions. Actually, it is not even necessary to price all non-basic

variables in every iteration, this is only mandatory in the last iteration, in order to

make sure that the final basic feasible solution is indeed optimal. The most expensive

steps in RSA are usually steps 2 and 4, both of them have a complexity that only

depends on m, since they require solving a m×m linear system.

As a consequence of that analysis, we arrive at a fundamental insight, that will

be explored in the next chapter:

The RSA makes it possible to solve LPs with not so many con-

straints but with an astronomically huge number of variables, as

long as those variables have a special structure that allows their

efficient pricing. Instead of calculating reduced costs for each indi-

vidual variable (an impossible task), the whole pricing step should

be efficiently solved as another optimization problem!

Notes

1.1. The origins of LP. The concept of linear programming was independently

devised by Soviet Leonid V. Kantorovich in 1939 and a few years later by

Dutch-American Tjalling Koopmans, in the context of models for the opti-

mum use of resources. They shared the 1975 Nobel Memorial Prize in Eco-

nomic Sciences for those contributions. Some information about Kantorovich’s

Method of Resolving Multipliers and the problematic early years of linear pro-

8
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gramming in the USSR is given in Note 4.9.

However, the simplex algorithm, the first fully developed and widely used

method for solving LPs was created in 1947 by George B. Dantzig (he received

many honors for that, but many people, including the authors of this book,

think that he should also have been one of the recipients of the 1975 Nobel

Prize). The early publications on the simplex algorithm are only abstracts

[Dantzig, 1948] or internal reports that are now difficult to consult. The proof

of the fundamental Theorem 1.1 can be found in Dantzig [1951] (reprinted in

Cottle [2003]). The RSA was proposed in Dantzig [1953].

1.2. LP duality. Consider a primal LP in the following general format:

min z = cx (1.4a)

s.t. Ax = b (1.4b)

Dx ≥ d (1.4c)

Fx ≤ f (1.4d)

x ≥ 0, (1.4e)

where A, D, and F have dimensions m×n, r×n, and s×n respectively; the

other vectors have compatible dimensions. Its dual LP is:

maxw =πb +ρd +θf (1.5a)

s.t. πA+ρD +θF ≤ c (1.5b)

ρ ≥ 0 (1.5c)

θ ≤ 0, (1.5d)

where the dual variable vectors π, ρ, and θ are associated with the con-

straints (1.4b), (1.4c), and (1.4d) of the primal LP respectively. For equality

constraints, the dual variables have no sign restrictions. In a minimization

LP, the ≥ constraints result in non-negative dual variables, while the ≤ con-

straints lead to non-positive dual variables. We state the three fundamental

results on LP duality (proofs can be found in any standard linear programming

textbook):

9
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Theorem 1.2: Weak duality. If x′ is a feasible solution to the primal LP

(1.4) and (π′,ρ′,θ′) is a feasible solution to the dual LP (1.5), then z′ = cx′ ≥
w′ = π′b+ ρ′d+ θ′f .

The above result implies that if the primal problem is unbounded, then its

dual is infeasible, and vice-versa. However, both primal and dual LPs can be

infeasible.

Theorem 1.3: Strong duality. The primal LP (1.4) has optimal solutions

if and only if the dual LP (1.5) has optimal solutions. Moreover, in such a

case the optimal primal objective function value z∗ is equal to the optimal dual

objective function value w∗.

All currently used LP-solving algorithms furnish both optimal primal and dual

solutions. In the RSA, an optimal dual solution is obtained in Step 2 of the

last iteration.

Theorem 1.4: Complementary Slackness. Let x′ be a feasible solution

of primal LP (1.4) and (π′,ρ′,θ′) be a feasible solution of dual LP (1.5).

Necessary and sufficient conditions for their simultaneous optimality are:

(1) (c− π′A− ρ′D − θ′F )⊺ ⊙ x′ = 0; and,

(2) (b−Ax′)⊺ ⊙ π′ = 0, (d−Dx′)⊺ ⊙ ρ′ = 0, (f − Fx′)⊺ ⊙ θ′ = 0,

where symbol ⊙ denotes the Hadamard product (a.k.a. element-wise matrix/

vector product).

Condition (1) can be less formally stated as: each primal variable should have

value zero or (non exclusive or) have reduced cost zero. Condition (2) can

be stated as: each dual variable should have value zero or its corresponding

primal constraint should be tight. Note that the reduced cost of a variable is

the slack of its corresponding dual constraint.

1.3. Interpretation of dual variables and pricing. The value of a dual variable

10
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indicates the rate at which the optimal objective function value would change

with a sufficiently small change in the RHS of the corresponding constraint (a

simple proof can be found on page 156 of Bertsimas and Tsitsiklis [1997]). The

economic interpretation of those rates as prices, sometimes known as marginal

prices or shadow prices, is related to some prototypical LP applications (like

the one illustrated in Exercise E 1.1) where the goal is maximizing profits

subject to resource availability. In those contexts, each dual variable indeed

corresponds to the maximum price that one should be willing to pay for an

extra unit of the corresponding resource, or equivalently, to the minimum price

that one should ask for selling one unit of that resource.

The use of the name pricing to denote reduced cost evaluation also started

in the early days of linear programming. One of the meanings of the word

pricing found in dictionaries is indeed evaluating. However, in the LP context,

the name is even more apt, as one is using dual prices for evaluating variables.

For example, in the context of Exercise E 1.1, let variable xj be associated

with some new product j and let column aj indicate how many units of each

resource are required for manufacturing one unit of j. Therefore, cj = cj−πaj

expresses the net effect of manufacturing one unit of that product, which

would sell for cj but would reduce the profits obtainable from manufacturing

the other products by πaj . If cj > 0 then manufacturing product j can lead

to an increased profit.

1.4. Modern simplex implementations. The original simplex algorithm only

survives as a teaching device in textbooks. The modern competitive imple-

mentations of the RSA are far more sophisticated than the essential scheme

presented in this chapter. In particular, there are several techniques for tak-

ing advantage of the fact that the linear systems that have to be solved in a

certain iteration are very similar to the linear systems already solved in the

previous iterations. Moreover, there are advanced techniques for choosing the

entering variable in each iteration. Merely choosing the variable with the most

negative reduced cost (the so-called Dantzig’s rule) is considered to be quite

naive. Many modern codes use steepest-edge strategies that try to estimate

(exact evaluation being too costly), for each variable with negative reduced

cost, the angle between the cost vector and the actual direction of change that

11
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would be obtained in RSA Step 4 [Forrest and Goldfarb, 1992].

1.5. Choosing costs for artificial variables, Two-phase method. How large

should artificial variables “large costs” should be in order to make sure that an

optimal solution with positive value for some artificial variable indeed indicates

that the original LP is infeasible? This can be a complex matter, see Section

4.4 in Bazaraa et al. [2010]. In practice, one can use a value M that is several

orders of magnitude larger (say, 106 times larger) than the expected optimal

solution value. If there is some reason to believe that this had not be enough,

it is possible to increase the value M (by some orders of magnitude) only

for the artificial variables with positive value in the optimal solution and

check whether that solution remains optimal. The potential difficulty with

that approach is that if M becomes too many orders of magnitude larger,

numerical issues (related to the fact that computers store numbers with a

finite precision) may appear.

An alternative simplex initialization that is not subject to numerical issues

is the two-phase method. The Phase One LP (always set as a minimization

problem) ignores the original costs, attributing unitary costs to all artificial

variables and zero to the remaining variables. If the optimal solution value

of that LP is larger than zero, it is proved that the original LP is infeasible.

Otherwise, a feasible basis is found. Phase Two LP optimizes the original

objective function starting from that basis.

1.6. LPs with variable bounds. Consider an LP in format min z = cx subject

to Ax = b, l ≤ x ≤ u, where A has dimension m× n. A slightly generalized

RSA (described in several LP textbooks, like Chvátal [1983]) can treat those

bounds on individual variables in a special way, so they do not make the

algorithm slower. In particular, bases still have dimension m×m.

1.7. Primal simplex, dual simplex, hot-start. A primal simplex algorithm,

like the RSA presented in this chapter, is characterized by the fact that the

intermediate primal solutions obtained along its iterations are indeed feasible

for the complete LP. On the other hand, the intermediate dual solutions,

12
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obtained by only considering the current basic variables, are not feasible for

the complete LP. Truly, the variables with negative reduced cost obtained in

the pricing correspond to violated dual constraints. Only in the last iteration,

where no variables with negative cost exist, both primal and dual solutions

are feasible, and therefore, optimal. A dual simplex algorithm operates in the

opposite way, intermediate solutions are dual feasible but only the last one is

also primal feasible.

A primal simplex algorithm is convenient for re-solving an LP after new vari-

ables are added since the previous optimal solution is still primal feasible and

can provide a hot-start basis. On the other hand, a dual simplex algorithm is

suited for the fast re-solve of an LP after new constraints are added, since the

previous optimal solution is still dual feasible.

1.8. Simplex convergence. The convergence of the simplex algorithm is related

to the number of iterations until an optimal solution is found. In the worst

case, the simplex algorithm may visit every basic feasible solution, requiring

exponentially many iterations. Happily, this only happens on artificially con-

structed instances, like those in Klee and Minty [1972]. The practical conver-

gence of the simplex algorithm is quite good. The typical number of iterations

grows linearly with m, but much more slowly with n [Shamir, 1987]. That

characteristic is essential for making the RSA a practical tool for solving the

LPs with small m but huge n arising from column generation. Anyway, con-

vergence can still be a serious issue in column generation. The topic is covered

in depth in Chapter 7.

Exercises

E1.1. A factory currently manufactures two different products, namely A and

B. The production is limited by the availability of two resources: R1 and

R2. Each unit of product A, sold at a profit of $15, requires 3 units of R1

and 2 units of R2. Each unit of B, sold at a profit of $9, requires 1 unit of

R1 and 2 units of R2. The factory has a weekly supply of 600 units of R1
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and 900 units of R2. So, the current optimal production plan is to make

75 units of A and 375 units of B, obtaining a total weakly profit of $4500.
The management is considering the possibility of also manufacturing two

new products, namely C and D. Each unit of C would be sold at a profit

of $11 and would require 2 units of R1 and 1 unit of R2. Each unit of D

would be sold at a profit of $5 and would require 1 unit of R1 and 1 unit

of R2. Determine whether any of those two new products could lead to an

increased total profit. If so, find a new improved production plan using the

RSA.
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Chapter 2

Dantzig-Wolfe Decomposition
and Column Generation for

Linear Programming

The Dantzig-Wolfe decomposition provides a technique for reformulating an LP and

solving it by an iterative process that alternates between solving a Restricted Master

LP and solving a single or multiple subproblems. As the subproblems generate

new variables that are added to the Restricted Master LP, the technique became

known as Column Generation. The overall goal is exploiting some particular matrix

structures that may make those subproblems substantially smaller and/or easier to

solve than the original LP.

2.1. Dantzig-Wolfe Reformulation for LP
Definition 2.1: Polyhedron, bounded polyhedron. A polyhedron is the set

of points in the intersection of the half-spaces defined by a finite number of linear

inequalities. So, a polyhedron P in an n-dimensional space can be defined as P =

{x ∈ Rn : Dx ≥ d} for some matrix D and vector d. As equality can be seen as the

intersection of two inequalities, the definition of a polyhedron may also include linear

equalities. For every LP, its set of constraints (or any subset of those constraints)

defines a polyhedron. A polyhedron P is bounded if there is a finite bound to the

distance from the origin 0 to any point x ∈ P .

Definition 2.2: Convex combination, convex hull. Given a finite set X =

{p1, . . . ,pt} of points in an n-dimensional space, x is a convex combination of the
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points in X if x =
∑

j∈[t] pjλj for some value of λ ∈ Rt
+ such that

∑
j∈[t] λj = 1.

The convex hull of a set X ∈ Rn (finite or not), denoted by Conv(X), is the set

formed by all points obtainable as a convex combination of some finite subset of

points in X.

Definition 2.3: Extreme point. A point in a polyhedron P is extreme if it is

not a convex combination of other points in P . The set of the extreme points of P

is denoted as Ext(P ).

Some elementary results in polyhedral theory are stated without proof.

Theorem 2.1: For any finite set X ∈ Rn, Conv(X) is a bounded polyhedron.

Theorem 2.2: For any polyhedron P , Ext(P ) is finite.

Theorem 2.3: Let P be the polyhedron defined by the set of constraints of an

LP in standard format. Every basic feasible solution of that LP corresponds to an

extreme point of P .

Theorem 2.4: If P is a bounded polyhedron, P = Conv(Ext(P )). In other words,

P = {x ∈ Rn : x =
∑

q∈Q qλq,
∑

q∈Q λq = 1, λ ≥ 0}, where Q = Ext(P ) (note

that we are using the vector q ∈ Q itself as the index of its corresponding λ variable).

We now can introduce the Dantzig-Wolfe reformulation. Consider an LP in the

following format:

min z = cx (2.1a)

s.t. Ax = b (2.1b)

x ∈ P, (2.1c)

where A has dimension m×n, and P is a bounded polyhedron represented by a set

of linear constraints. We can replace (2.1c) by the requirement that x is a convex

combination of the points in Q = Ext(P ). This can be done by including additional
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variables λ in the LP and rewriting it as:

min z = cx (2.2a)

s.t. Ax = b (2.2b)

x =
∑
q∈Q

q λq (2.2c)

∑
q∈Q

λq = 1 (2.2d)

λ ≥ 0. (2.2e)

That LP, having both x and λ variables, is known as the explicit reformulated

LP or explicit Master LP. Finally, we can eliminate the original variables x, by sub-

stituting their occurrences in (2.2a) and (2.2b), using (2.2c), obtaining the following

Dantzig-Wolfe reformulated LP (a.k.a. Master LP):

zM = min
∑
q∈Q

(cq)λq (2.3a)

s.t.
∑
q∈Q

(Aq)λq = b (2.3b)

∑
q∈Q

λq = 1 (2.3c)

λ ≥ 0. (2.3d)

In the objective function (2.3a), the scalar number cq is the cost of the extreme point

q ∈ Ext(P ). In Constraints (2.3b), the m×1 vector Aq is the linear transformation

of q over A. Note that it is possible that Aq ̸= b, for all q ∈ Q; meaning that no

point in Ext(P ) satisfies (2.1b). However, Constraints (2.3b) state that the linear

combination of those vectors given by λ should be equal to b. Equation (2.3c) is

known as the convexity constraint and make sure that the linear combination is also

a convex combination.
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Consider the following example:

min z = −5x1 + 3x2

s.t. x1 + 2x2 = 6

x1 + x2 ≤ 4

2x1 ≤ 7

x ≥ 0.

(2.4)

Let Ax = b be defined by the first equation and P by the remaining inequalities

(including the variable non-negativities). Bounded polyhedron P has four extreme

points, Ext(P ) = {( 0 0 ), ( 0 4 ), ( 3.5 0.5 ), ( 3.5 0 )}. The explicit reformulated LP

is:

min z = −5x1 +3x2

s.t. x1 +2x2 = 6

x1 − 3.5λ(3.5 0.5) − 3.5λ(3.5 0) = 0

x2 − 4λ(0 4) − 0.5λ(3.5 0.5) = 0

λ(0 0) + λ(0 4) + λ(3.5 0.5) + λ(3.5 0) = 1

λ ≥ 0.

Eliminating the x variables, the resulting Dantzig-Wolfe reformulation is:

min z = 12λ(0 4) − 16λ(3.5 0.5) − 17.5λ(3.5 0)

s.t. 8λ(0 4) + 4.5λ(3.5 0.5) + 3.5λ(3.5 0) = 6

λ(0 0) + λ(0 4) + λ(3.5 0.5) + λ(3.5 0) = 1

λ ≥ 0.

(2.5)

Its optimal solution is λ(0 0) = 0, λ(0 4) = 3/7, λ(3.5 0.5) = 4/7, and λ(3.5 0) = 0, and

with z = −4. The optimal solution to the original LP can be recovered using (2.2c),

so x = (x1 x2 ) = 3/7 ( 0 4 ) + 4/7 ( 3.5 0.5 ) = ( 2 2 ).

As that original LP has two variables, the reformulation procedure can be de-

picted graphically in a cartesian plane. Figure 2.1 shows in light blue the set P . The

set of LP solutions (the line segment between ( 0 3 ) and ( 2 2 )) is marked in black.

It can be seen that point ( 0 0 ) belongs to the line x1+2x2 = 0, ( 0 4 ) belongs to the

line x1+2x2 = 8, ( 3.5 0.5 ) belongs to the line x1+2x2 = 4.5, and ( 3.5 0.5 ) belongs

to the line x1 + 2x2 = 3.5. Therefore, a convex combination of those four points

belongs to line x1+2x2 = 6 if and only if 0λ(0 0)+8λ(0 4)+4.5λ(3.5 0.5)+3.5λ(3.5 0) = 6.
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x1

x2

Figure 2.1: DW reformulation of the LP (2.4)

Consider this second example:

min z = 8x1 + 13x2 − 5x3

s.t. 4x1 + x2 + 2x3 = 5

x1 + x2 = 1

−2x1 + 3x2 + 3x3 ≤ 3

3x1 − x2 + 6x3 ≤ 6

x ≥ 0.

LetAx = b be defined by the first two equations and P by the remaining inequalities

(including the variable non-negativities). Bounded polyhedron P has five extreme

points, Ext(P ) = {( 0 0 0 ), ( 2 0 0 ), ( 0 1 0 ), ( 3 3 0 ), ( 0 0 1 )}. The resulting

Dantzig-Wolfe reformulation is:

min z = 16λ(2 0 0) + 13λ(0 1 0) + 63λ(3 3 0) − 5λ(0 0 1)

s.t. 8λ(2 0 0) + λ(0 1 0) + 15λ(3 3 0) + 2λ(0 0 1) = 5

2λ(2 0 0) + λ(0 1 0) + 6λ(3 3 0) = 1

λ(0 0 0) + λ(2 0 0) + λ(0 1 0) + λ(3 3 0) + λ(0 0 1) = 1

λ ≥ 0.

(2.6)

Its optimal solution is λ(2 0 0) = λ(0 0 1) = 0.5, and λ(0 0 0) = λ(0 1 0) = λ(3 3 0) = 0,

with z = 5.5. The optimal solution to the original LP can be recovered using (2.2c),

so x = (x1 x2 x3 ) = 0.5 ( 2 0 0 ) + 0.5 ( 0 0 1 ) = ( 1 0 0.5 ).
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2.2. Solving the Reformulated LP

2.2.1.Solving using the Revised Simplex Algorithm
A reformulated LP (2.3) has m+1 equalities, but |Ext(P )| variables, which can be

a huge number even if the original problem (2.1) has a moderate size. Indeed, except

for small-sized examples, it is practically impossible to even compute (2.3) explicitly,

let alone solve it directly. So, Dantzig and Wolfe had to propose a special algorithm

for solving their reformulated LPs. That algorithm was the RSA, presented in the

previous chapter, with the following modifications:

• Modified RSA Step 1: A basis B for (2.3) has dimension (m+ 1)× (m+

1). Since the variables in that LP are not explicitly known, it may be more

difficult to find an initial basis B with actual columns from the problem.

However, the step can always be performed by defining B as an identity

matrix corresponding to m+ 1 artificial variables with very large costs.

• Modified RSA Step 3: Let (π∗, ν∗) be the optimal dual solution calculated

in Step 2, where π = (π1 . . . πm) corresponds to the Constraints (2.3b) and ν

to the Constraint (2.3c). The pricing is done by applying the simplex algorithm

to the following subproblem LP:

c∗ = min (c− π∗A)x− ν∗ (2.7a)

s.t. x ∈ P. (2.7b)

The use of the symbol ∗ helps to remind us that π∗ and ν∗ are constants

in (2.7a), and only x is a vector of variables. If the subproblem is infeasible,

i.e., P = ∅ and c∗ =∞, then the algorithm stops (in its first iteration), since

the original problem should be infeasible too. Otherwise, as P is bounded, an

optimal solution x∗ will be found. By Theorem 2.3, x∗ ∈ Ext(P ). If c∗ < 0

then the variable λx∗ having cost cx∗ and corresponding to the column
(
Ax∗
1

)
should be chosen as the entering variable. If c∗ ≥ 0, then the algorithm stops

and the current basic feasible solution is optimal. However, if the current solu-

tion still contains some artificial variables with a positive value, this actually

means that the original LP is infeasible.

Theorem 2.5: The Modified RSA solves (2.3).
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Proof. It only has to be shown that Modified Step 3 correctly performs the pric-

ing. Consider variable λq, q ∈ Q. Its reduced cost at a given iteration is given

by:

cq = cq −
(
π∗ ν∗

)
·

(
Aq

1

)
= cq − π∗Aq − ν∗ = (c− π∗A)q − ν∗.

Therefore, c∗ = min{cq : q ∈ Q}. Moreover, the point x∗ ∈ Ext(P ) generates a

variable (and the corresponding column) with reduced cost equal to c∗. If c∗ < 0,

that variable λx∗ is indeed eligible for entering in the basis. If c∗ ≥ 0, it is proven

that no variable has a negative reduced cost.

Note that the subproblem LP (2.7) finds the minimum reduced cost of all non-

artificial variables, basic and non-basic ones. Basic variables have zero reduced cost.

So, unless the Modified RSA stops in the first iteration by infeasibility or all basic

variables are artificial, it will stop with c∗ = 0.

There is an important practical observation. Using the generating vector x∗ itself

as the index of the generated variable λx∗ is conceptually correct and algebraically

convenient. However, it is not so convenient to implement the algorithm. This hap-

pens because those vectors can be quite long and may contain fractional elements.

Therefore, it is much more common to number the λ variables following their order

of generation. So, the first generated variable would be λ1, the second λ2, and so on.

Of course, there must be a side table linking the numerical index of each generated

variable to its corresponding generating point in Ext(P ). That table will be needed

in order to recover the solution to the original LP (2.1) using (2.2c).

2.2.2. Solving using Restricted Master LPs:

the Column Generation Algorithm
Solving the reformulated problem using the Modified RSA is a “low-level approach”.

In order to do that, one would have to implement efficiently all RSA steps, which is

a complex task. Happily, assuming that an LP solver is available (a very reasonable

assumption, considering that Modified Step 3 already requires an LP solver), a

simpler higher-level algorithm can be used.
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Definition 2.4: Master LP, Restricted Master LP. The reformulated LP

(2.3) is called the Master LP (MLP). A Restricted Master LP (RMLP) is the

restriction to (2.3) obtained by only keeping the variables corresponding to the

points in a subset S of Ext(P ). An RMLP is:

zRM = min
∑
q∈S

(cq)λq (2.8a)

s.t.
∑
q∈S

(Aq)λq = b (2.8b)

∑
q∈S

λq = 1 (2.8c)

λ ≥ 0. (2.8d)

Usually, |S| ≪ |Ext(P )|. The RMLP may also contain additional artificial variables

with very large costs.

The following algorithm for solving the MLP will be called the Column Gener-

ation Algorithm (CGA):

CGA Step 1: Set an initial feasible RMLP.

Sometimes it is possible to find a suitably small set of variables from the MLP

for that purpose. However, in many cases, it is more practical to introduce artificial

variables. Alternatively, one can start with an empty RMLP and use the Farkas

pricing (see Note 2.5) while the current RMLP is infeasible.

CGA Step 2: Solve the current RMLP.

Solve the RMLP and let (π∗, ν∗) be the obtained optimal dual solution.

CGA Step 3 (Pricing): Solve the Subproblem LP.

Solve the LP (2.7).

CGA Step 4: Either stop or update RMLP and go to Step 2.

Let x∗ be the optimal subproblem solution found (if the subproblem is infeasible

the algorithm stops in the first iteration and the original LP is infeasible). If c∗ < 0

then a new variable λx∗ (usually notated as λj , where j is its sequential generation

number) should be added to the RMLP. That variable has cost cx∗ and the corre-

sponding column is
(
Ax∗
1

)
. The CGA should then go to Step 2 for starting a new

iteration. However, if c∗ ≥ 0, then the algorithm stops. In that case, if the RMLP
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primal solution contains some artificial variables with positive value, the original

LP is infeasible. Otherwise, the current RMLP provides an optimal solution to the

MLP. Let λ∗ ∈ R|S| be the optimal primal solution of the RMLP. The optimal

solution to the original problem is:

x =
∑
q∈S

λ∗
qq. (2.9)

Theorem 2.6: At any iteration of the CGA for solving (2.3) (even if the RMLP

contains artificial variables), the value zRM+c∗ is a lower bound on its optimal cost

zM.

Proof. The dual of the MLP (2.3) is:

max πb+ ν (2.10a)

s.t. πAq + ν ≤ cq q ∈ Q. (2.10b)

Let (π∗, ν∗) be an optimal dual solution with value zRM = π∗b+ ν∗ of some RMLP

and let c∗ = min{cq − π∗Aq − ν∗ : q ∈ Q} be the optimal solution value of the

corresponding pricing subproblem. If c∗ < 0 then (π∗, ν∗) is not feasible for (2.10)

and −c∗ is the maximum violation of a constraint in (2.10b). Therefore, (π∗, ν∗+c∗)

is feasible for (2.10) and has value zRM + c∗.

The above result may be very useful for estimating the optimal MLP value before

the CGA fully converges. Moreover, it also proves that the CGA finishes correctly.

Consider an RMLP with value zRM and such that its dual solution leads to c∗ ≥ 0.

If the RMLP primal solution contains very costly artificial variables with a positive

value, zRM+ c∗ is a very large lower bound on zM, showing that the MLP should be

infeasible. Otherwise, zRM should be an upper bound on zM, so c∗ should be zero

and zRM should be equal to zM.

Let us illustrate the Column Generation Algorithm for solving the MLP (2.6).
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The subproblem has the following format:

c∗ = min

(
( 8 13 −5 )− π∗

(
4 1 2

1 1 0

))
x− ν∗ =

s.t.

(8− 4π∗
1 − π∗

2)x1 +(13− π∗
1 − π∗

2)x2 +(−5− 2π∗
1)x3 −ν∗

− 2 x1 + 3 x2 + 3 x3 ≤ 3

3 x1 − x2 + 6 x3 ≤ 6

x1, x2, x3 ≥ 0.

The constraints in that LP correspond to the polyhedron P . Suppose that one

realizes that point ( 0 0 0 ) ∈ Ext(P ), so it can provide variable λ(0 0 0), more conve-

niently notated as λ1. The first RMLP is initialized using two additional artificial

variables, a1 and a2, both having “large cost” 99:

zRM = min 99a1 + 99a2 + 0λ1

s.t. a1 = 5

a2 = 1

λ1 = 1

a1 , a2 , λ1 ≥ 0.

By solving this first RMLP, one obtains zRM = 594. The optimal dual solution is

π∗ = ( 99 99 ) and ν∗ = 0 (the primal solution of the RMLP has no use at this

point). So, the first subproblem LP is:

c∗ =min −487x1 − 185x2 − 203x3

s.t. x ∈ P.

Its optimal solution is x∗ = ( 3 3 0 ), with c∗ = −2016. According to Theorem 2.6,

zRM + c∗ = −1422 is a valid lower bound on zM (the bound is very poor because

the artificial variables are still being used by the RMLP solution). The column
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corresponding to generating point x∗ is inserted into the RMLP, that becomes:

zRM = min 99a1 + 99a2 + 0λ1 + 63λ2

s.t. a1 + 15λ2 = 5

a2 + 6λ2 = 1

λ1 + λ2 = 1

a1, a2, λ1, λ2 ≥ 0.

By reoptimizing it, one gets zRM = 258, π∗ = ( 99 − 237 ) and ν∗ = 0. The second

subproblem LP is min−151x1+151x2−203x3, subject to x ∈ P . Its solution yields

x∗ = ( 2 0 0 ), with c∗ = −302, and the obtained lower bound is −44 ≤ zM. The

corresponding column is inserted into the RMLP, which becomes:

zRM = min 99a1 + 99a2 + 0λ1 + 63λ2 + 16λ3

s.t. a1 + 15λ2 + 8λ3 = 5

a2 + 6λ2 + 2λ3 = 1

λ1 + λ2 + λ3 = 1

a1, a2, λ1, λ2, λ3 ≥ 0.

By reoptimizing the RMLP, one gets zRM = 107, π∗ = ( 99 −388 ) and ν∗ = 0. The

third subproblem LP is min 302x2−203x3, subject to x ∈ P . Its solution yields x∗ =

( 0 0 1 ), with c∗ = −203, so the lower bound −96 ≤ zM at this iteration is worse than

the bound obtained at the previous iteration. This is normal. While the sequence of

upper bounds on zM given by successive zRM values is monotonically non-increasing,

the sequence of lower bounds provided by Theorem 2.6 is not monotonically non-

decreasing. The column corresponding to x∗ is inserted into the RMLP:

zRM = min 99a1 + 99a2 + 0λ1 + 63λ2 + 16λ3 − 5λ4

s.t. a1 + 15λ2 + 8λ3 + 2λ4 = 5

a2 + 6λ2 + 2λ3 = 1

λ1 + λ2 + λ3 + λ4 = 1

a1, a2, λ1, λ2, λ3, λ4 ≥ 0.

By reoptimizing the RMLP, one gets zRM = 5.5, π∗ = ( 3.5 0 ) and ν∗ = −12
(there are alternative optimal dual solutions like (π∗, ν∗) = ( 0 10.5 − 5 ) as well

as (π∗, ν∗) = ( 99 − 286.5 − 203)). The fourth subproblem is min−6x1 + 9.5x2 −
12x3+12, subject to x ∈ P . We have that c∗ = 0 (the LP actually solved has optimal
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cost −12, the constant term corresponding to −ν∗ is added later). This proves that

zRM = zM = 5.5 and that the current RMLP contains an optimal MLP solution.

Now, the primal RMLP solution λ1 = λ2 = 0, and λ3 = λ4 = 0.5 can be used for

computing the optimal solution of the original LP (it is necessary to retrieve the

points that generated λ3 and λ4 from a side table): x = 0.5 ( 2 0 0 ) + 0.5 ( 0 0 1 ) =

( 1 0 0.5 ).

In this small example, the final RMLP contains four out of the five columns in

the MLP. Such a high proportion is very unlikely to be observed in larger problems.

In fact, the Column Generation Algorithm is expected to be practical only because

the final RMLP usually contains only a tiny fraction of the columns in MLP.

The CGA actually has a fairly large degree of freedom, as indicated in the

following observations:

• If Constraints (2.1b) in the original LP happen to contain inequalities, it is

not mandatory to convert them to equalities. In that case, the constraints in

the MLP will have the same sense of the corresponding constraints in (2.1b).

• The subproblem LP may have a particular structure that makes possible the

use of specialized algorithms that are faster than generic LP algorithms. For

example, it may correspond to a minimum cost network flow problem, an

especially favorable situation that will be covered in detail in Section 2.5.

In other cases, the points in Ext(P ) correspond to the solutions of certain

combinatorial optimization problems, for which highly efficient polynomial-

time algorithms are known. For example, if the points in Ext(P ) correspond

to spanning trees, the Prim–Jarńık algorithm can solve the pricing.

• Non-optimal solutions to Subproblem (2.7a), as long as they yield columns

with negative reduced cost, can be used in the pricing step. So, it is possible

to use fast heuristics for the pricing, especially in the first iterations, where

it is easier to find columns with negative reduced costs. Indeed, in order to

speed up the CGA convergence (see Chapter 7), it is possible to add multiple

columns in the same iteration. In fact, it is not even necessary that all the

generating points belong to Ext(P ), other points in P may also be used for

generating variables. Anyway, when heuristics fail, it is mandatory to solve

the pricing to optimality for checking whether there are still columns with

negative reduced cost.
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• The re-optimization of the RMLPs after new columns are introduced is not

performed from scratch. A primal simplex algorithm (Note 1.7) can be hot-

started with the optimal basis of the previous RMLP. Truly, this happens

automatically in most LP solver packages.

• If the RMLP starts to get big, it is possible to perform a clean-up, removing

from it older columns that are not likely to be useful anymore. There are

several clean-up criteria (also discussed in Chapter 7). Columns in the current

basis, even if with value zero, should not be removed since that may interfere

with the hot-start capability of the LP solver.

2.3. Multiple Subproblems
The most important structure that can be exploited with Dantzig-Wolfe reformula-

tion is the case where the Subproblem LP is decomposable into multiple independent

subproblems.

2.3.1. General Case
Consider an LP in the following format:

min z = c1x1 + · · ·+ cUxU (2.11a)

s.t. A1x1 + · · ·+AUxU = b (2.11b)

xu ∈ P u u ∈ [U ]. (2.11c)

For each u ∈ [U ], Au has dimension m × nu and P u is a bounded polyhedron

defined by a set of linear constraints. Constraints (2.11b) are a generic set of m

linear equations over n =
∑

u∈[U ] n
u variables. The special structure in this LP

is that (2.11c) consists of U independent sets of constraints, each such set being

expressed over a distinct subset of the variables. We can replace (2.11c) by the

requirement that each xu is a convex combination of the points in Qu = Ext(P u).

This can be done by including additional variables θ and writing the explicit master
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LP as:

min z = c1x1 + · · ·+ cUxU (2.12a)

s.t. A1x1 + · · ·+AUxU = b (2.12b)

xu =
∑
q∈Qu

qθuq u ∈ [U ] (2.12c)

∑
q∈Qu

θuq = 1 u ∈ [U ] (2.12d)

θ ≥ 0. (2.12e)

Finally, by eliminating the original variables x, substituting their occurrences in

(2.12a) and (2.12b), using (2.12c), we obtain the Master LP:

zM = min
∑
u∈[U ]

∑
q∈Qu

(cuq)θuq (2.13a)

s.t.
∑
u∈[U ]

∑
q∈Qu

(Auq)θuq = b (2.13b)

∑
q∈Qu

θuq = 1 u ∈ [U ] (2.13c)

θ ≥ 0. (2.13d)

This MLP can be solved by a slightly generalized Column Generation Algorithm

(the algorithm presented in the previous section corresponds to the case U = 1).

Let a Restricted Master LP be any feasible LP obtained by only keeping a subset of

the columns of the MLP and (possibly) by artificial variables with very large costs.

Let π = (π1 . . . πm) be the vector with the dual variables associated to (2.13b)

and ν = (ν1 . . . νU ) be the vector with the dual variables associated to (2.13c).

Let (π∗, ν∗) be the optimal RMLP dual solution obtained in some iteration. The

main generalization is that the pricing step is performed by solving U subproblems.

Subproblem u, u ∈ [U ], is defined as:

cu∗ = min (cu − π∗Au)xu − ν∗u (2.14a)

s.t. xu ∈ P u. (2.14b)

Let xu∗ be the optimal solution found (if the subproblem is infeasible the algorithm

stops in the first iteration and the original problem is infeasible). If cu∗ < 0, then a
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new variable θuxu∗ (often notated as θuj , where j is its sequential generation number

in subproblem u) should be added to the RMLP. That variable has cost cuxu∗ and

the corresponding column is
(
Auxu∗

eu

)
, where eu is a U × 1 vector having 1 in row

u and 0 in the other rows. If for all u, u ∈ [U ], cu∗ ≥ 0 then the algorithm stops.

In that case, if the RMLP primal solution contains some artificial variables with

a positive value, the original problem is infeasible. Otherwise, the current RMLP

provides an optimal solution to the MLP.

2.3.2. Identical Subproblems
In some cases, the Dantzig-Wolfe reformulation may lead to identical subproblems.

Subproblems i, j ∈ [U ] are said to be identical if ci = cj , Ai = Aj , and P i = P j . At

first sight, this may look like a very exceptional case. However, as will be shown in

Chapter 4, there are many important applications even leading to the case where all

subproblems are identical. Solving identical subproblems is wasteful. The columns

that would be generated are essentially the same, differing only in the eu part of

the vector.

However, it is not necessary to do that. Identical subproblems can be aggregated.

Consider that a maximal set of identical subproblems defines a group and that

there are K such groups. Group k ∈ [K] is composed by Uk subproblems. Assume

w.l.o.g. that the columns in the original problem (2.11) are permutated in such a way

that the first K subproblems are distinct and the remaining U − K subproblems

are identical to some of those first K subproblems. This means that for a group

k ∈ [K], ck, Ak, and Qk = Ext(P k) can be used for representing the cost vectors,

submatrices of A, and set of extreme points associated to any subproblem in that

group. Consider the following Master LP:

zM = min
∑
k∈[K]

∑
q∈Qk

(ckq)λk
q (2.15a)

s.t.
∑
k∈[K]

∑
q∈Qk

(Akq)λk
q = b (2.15b)

∑
q∈Qk

λk
q = Uk k ∈ [K] (2.15c)

λ ≥ 0. (2.15d)
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This LP is obtained from (2.13) by defining aggregated variables λk
q=
∑

u∈U(k)θ
u
q ,

q ∈ Qk, where U(k) ⊆ [U ] are the indices associated to group k ∈ [K]. Then, by

variable substitution, (2.15a) is equivalent to (2.13a) and (2.15b) is equivalent to

(2.13b). However, the k-th aggregated convexity constraint (2.15c) is obtained by

summing Uk equations in (2.13c) (in general, replacing a set of equations by the

single equation corresponding to their sum is a relaxation and may increase the set

of feasible solutions of an LP). So, the following result is not obvious and should be

proved:

Theorem 2.7: An optimal solution of (2.15) yields an optimal solution of (2.13).

Proof. Given an optimal solution λ∗ of (2.15) with value z∗, we claim that any

θ such that ∑
u∈U(k)

θuq = λk∗
q k ∈ [K], q ∈ Qk (2.16a)

∑
q∈Qu

θuq = 1 u ∈ [U ] (2.16b)

θ ≥ 0 (2.16c)

is a solution of (2.13) with value z∗. Indeed, (2.16a) and (2.15a) imply that θ

costs z∗ with respect to objective function (2.13a), while (2.16a) and (2.15b) imply

that constraints (2.13b) are satisfied. Finally, (2.16b) directly implies that (2.13c)

is satisfied. It remains to show that (2.16) always has solutions. This is true, and

one such solution is θuq = λk∗
q /Uk, for u ∈ [U ] and q ∈ Qu.

The Master LP (2.15) can be solved by the Column Generation Algorithm,

where subproblem k, k ∈ [K], is defined as:

ck∗ = min (ck − π∗Ak)xk − ν∗k (2.17a)

s.t. xk ∈ P k, (2.17b)

where ν is the vector of dual variables corresponding to (2.15c).

Theorem 2.8: At any iteration of the CGA for solving (2.15), the value zRM +∑
k∈[K] U

k ck∗ is a lower bound on its optimal cost.
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Proof. The dual of the MLP (2.15) is:

max πb +
∑
k∈[K]

Ukνk (2.18a)

s.t. πAkq + νk ≤ ckq k ∈ [K], q ∈ Qk. (2.18b)

Let (π∗,ν∗) be an optimal dual solution with value zRM = π∗b +
∑

k∈[K] U
kν∗k of

some RMLP. By the same reasoning used in the proof of Theorem 2.6, (π∗,ν∗+c∗),

where c∗ = (c1∗ . . . cK∗), is feasible for (2.18) and has value zRM +
∑

k∈[K] U
k ck∗.

The MLP format (2.15) includes the situations where all subproblems are dis-

tinct (U = K) and even the single subproblem (U = K = 1) as particular cases.

We make some remarks about the cases where U > K, i.e., when there are identical

subproblems:

• Let λ∗ be an optimal solution of (2.15). If λk∗ ̸= 0 for some k ∈ [K] such that

Uk > 1, then (2.16) has infinitely many solutions. Each such solution provides

an alternative optimal solution to (2.13) and (by conversion using (2.12c))

an alternative optimal solution to the original LP. Note that the existence

of those alternative solutions is an intrinsic feature of a symmetric original

LP, not something that is created by the Dantzig-Wolfe reformulation. Truly,

(2.11) can be rewritten as:

min z =
∑
k∈[K]

ckyk (2.19a)

s.t.
∑
k∈[K]

Akyk = b (2.19b)

yk =
∑

u∈U(k)

xu k ∈ [K] (2.19c)

xu ∈ P u u ∈ [U ]. (2.19d)

This format makes clear that the objective function (2.19a) and constraints

(2.19b) only depend on asymmetric aggregated original variables y and that

there is a lot of freedom in choosing xu values. For example, consider a situ-
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ation where K = 1, i.e., all the U subproblems are identical. Given a solution

x = (x1 . . . xU ) to (2.13), up to U ! distinct equivalent symmetric solutions

can be obtained by only permuting the u indices. The fact that the identical

subproblems case leads to many alternative symmetric original solutions has

important negative consequences in some contexts, as will be shown in Chap-

ters 4 and 8. Anyway, the aggregated original variables yk, k ∈ [K], are

uniquely determined from the solution of (2.15) by:

yk =
∑
q∈Qk

qλq. (2.20)

Consider the following example:

min z = 3x1 + 7x2 + 2x3 − x4 + 3x5 + 7x6

s.t. 2x2 + x3 − x4 + 2x6 ≥ 7

x1 + x2 + 2x3 + 3x4 + x5 + x6 = 12

x1 + x2 ≤ 4

3x1 + x2 ≤ 6

x3 + x4 ≤ 5

x5 + x6 ≤ 4

3x5 + x6 ≤ 6

x ≥ 0.

(2.21)

By keeping the first two constraints in the MLP (i.e., by letting those constraints

define (2.11b)), the remaining constraints decompose into three independent sub-

problems, defined by the following subsets of variables: x1 = (x1 x2), x
2 = (x3 x4),

and x3 = (x5 x6). Moreover, c1 = c3 = ( 3 7 ), A1 = A3 = ( 0 2
1 1 ), and P 1 = P 3.

So, the first and third subproblems are identical and define a group. The second

subproblem alone defines a second group. So, we have U = 3, K = 2, U1 = 2, and

U2 = 1. The resulting subproblems that indeed have to be solved are:

c1∗ = min (3− π∗
2)x1 + (7− 2π∗

1 − π∗
2)x2 − ν1

s.t. x1 + x2 ≤ 4

3 x1 + x2 ≤ 6

x ≥ 0,
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and
c2∗ = min (2− π∗

1 − 2π∗
2)x3 + (−1 + π∗

1 − 3π∗
2)x4 − ν2

s.t. x3 + x4 ≤ 5

x ≥ 0.

Let λ1
q = θ1q + θ3q, q ∈ Q1, λ2

q = θ2q, q ∈ Q2, denote the aggregated master variables.

Note that ( 0 0 ) clearly belongs to both P 1 and P 2 and could provide initial variables

λ1
(000) and λ2

(000) that would be enough for satisfying the convexity constraints.

However, whenever is known that a subproblem admits 0 as a solution it is usual to

just relax the corresponding convexity constraint to ≤. This is correct because the

slack variables of the relaxed constraints are equivalent to the variables generated

by the 0 solutions. By also including two artificial variables, the first RMLP is:

zRM = min 99a1 + 99a2

s.t. a1 ≥ 7

a2 = 12

≤ 2

≤ 1

a ≥ 0.

Constraints of format ≤ b, with a void left-hand side and b ≥ 0 are always satisfied

and, by convention, have a dual variable with value 0. So, the solution of the RMLP

yields zRM = 1881, π∗ = ( 99 99 ) and ν∗ = ( 0 0 ). Subproblem c1∗ = min−96x1 −
290x2, subject to x1 ∈ P 1 yields x1∗ = ( 0 4 ), with c1∗ = −1160. Subproblem
c2∗ = min−295x3−199x4, subject to x2 ∈ P 2 yields x2∗ = ( 5 0 ), with c2∗ = −1475.
The second RMLP is:

zRM = min 99a1 + 99a2 + 28λ1
1 + 10λ2

1

s.t. a1 + 8λ1
1 + 5λ2

1 ≥ 7

a2 + 4λ1
1 + 10λ2

1 = 12

λ1
1 ≤ 2

λ2
1 ≤ 1

(a,λ) ≥ 0,

with zRM = 24, π∗ = ( 0 7 ) and ν∗ = ( 0 − 60 ). Subproblem min−4x1, subject
to x1 ∈ P 1 yields x1∗ = ( 2 0 ), with c1∗ = −8. Subproblem min−12x3 − 22x4 + 60,
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subject to x2 ∈ P 2 yields x2∗ = ( 0 5 ), with c2∗ = −50. Adding the new columns

and removing the artificial variables (not needed anymore), the third RMLP is:

zRM = min 28λ1
1 + 10λ2

1 + 6λ1
2 − 5λ2

2

s.t. 8λ1
1 + 5λ2

1 − 5λ2
2 ≥ 7

4λ1
1 + 10λ2

1 + 2λ1
2 + 15λ2

2 = 12

λ1
1 + λ1

2 ≤ 2

λ2
1 + λ2

2 ≤ 1

λ ≥ 0,

with zRM = 19, π∗ = ( 2.5 2 ) and ν∗ = ( 0 − 22.5 ). Subproblem minx1, sub-

ject to x1 ∈ P 1 yields c1∗ = 0. Subproblem min−4.5x3 − 4.5x4 + 22.5, subject to

x2 ∈ P 2 yields c2∗ = 0. So, the primal RMLP solution (λ1
1 = 0.375, λ1

2 = 0, λ2
1 = 0.9,

λ2
2 = 0.1) gives an optimal solution of the MLP, which can be converted into optimal

solutions for the original LP. The variables that defined the unique second subprob-

lem have the unique value x2 = (x3 x4 ) = 0.9 ( 5 0 ) + 0.1 ( 0 5 ) = ( 4.5 0.5 ). On

the other hand, there are multiple possible values for the other variables, depending

on how the values of the aggregated variables λ1 are distributed to θ1 and θ2 vari-

ables. The even division used in the proof of Theorem 2.7 yields x1 = (x1 x2 ) =

x3 = (x5 x6 ) = 0.1875 ( 0 4 ) = ( 0 0.75 ). Alternative optimal solutions include

(x1 x2 x5 x6 ) = ( 0 1.5 0 0 ) and its symmetric solution (x1 x2 x5 x6 ) = ( 0 0 0 1.5 ).

The aggregated original variables y corresponding to the identical subproblems could

be directly obtained using (2.20): y1 = 0.375 ( 0 4 ) = ( 0 1.5 ). Of course, all possible

solutions satisfy x1 + x3 = y1.

2.4. Unbounded Subproblems
The previous sections assumed that the subproblems are always defined by bounded

polyhedra. That assumption avoided some technicalities that could obscure the

presentation of the main ideas. However, it is quite possible that a Dantzig-Wolfe

reformulation leads to unbounded subproblem LPs, even if the original problem is

not unbounded.

One way of dealing with that possibility would be by adding lower and up-
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per bounds lj ≤ xj ≤ uj , j ∈ [n], on each individual variable. Those bounds

would be part of the polyhedra defining the subproblems, making sure that all of

them are bounded. Variable bounds are treated implicitly in modern simplex im-

plementations, they do not make the algorithm slower. If those bounds are not

readily available from modeling considerations, one may impose very large bounds

−Mj ≤ xj ≤ Mj on each variable. Those “artificial bounds” can be viewed as a

device for detecting unboundedness: if some variable xj has value −Mj or Mj in

the final solution of the original LP, then this LP is unbounded. This is akin to the

use of artificial variables with very large costs for detecting infeasibility.

However, it is possible to handle unbounded subproblems directly, by generaliz-

ing the definition of Dantzig-Wolfe reformulation and the Column Generation Al-

gorithm. We need some additional theoretical results for characterizing unbounded

polyhedra.

Definition 2.5: Conic combination, conic hull. Given a finite set of points

D = {d1, . . . ,dt} in an n-dimensional space, d is a conic combination of the vectors

in D if d =
∑

j∈[t] djµj for some µ ∈ Rt
+. The conic hull of a set D ∈ Rn (finite or

not), denoted by Cone(D), is the set of all points obtainable as a conic combination

of some finite subset of points in D.

Definition 2.6: Ray, normalized representation of a ray, extreme ray. A

point (interpreted as a direction) d ∈ Rn \ {0} defines a ray of the unbounded

polyhedron P if for any x ∈ P and θ ≥ 0, x + θd also belongs to P . Any posi-

tive multiple of d, i.e., any direction d′ = αd, for α > 0, defines the same ray. A

normalized representation of a ray is the unique direction d defining it such that

||d||1 =
∑

i∈[n] |di| = 1 (di is the i-th element of vector d). A ray of P is extreme if

its normalized representation is not a conic combination of the normalized represen-

tations of other rays of P . Let ExtRay(P ) denote the set containing the normalized

representation of each extreme ray in P .

Theorem 2.9: For any polyhedron P , ExtRay(P ) is finite.

Theorem 2.10: For any polyhedron P , P = Conv(Ext(P ))+Cone(ExtRay(P )).

In other words, P = {x ∈ Rn : x =
∑

q∈Q qλq+
∑

r∈R rµr,
∑

q∈Q λq = 1, (λ,µ) ≥
0}, where Q = Ext(P ) and R = ExtRay(P ) (note that we are using the vector
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r ∈ R itself as the index of its corresponding µ variable).

The above result remains correct if ExtRay(P ) is replaced by any set containing

exactly one direction defining each extreme ray of P . In fact, any point in a poly-

hedron can be written as a convex combination of its extreme points plus a conic

combination of directions defining its extreme rays. Anyway, by Theorem 2.10, if in

the original LP (2.1) the polyhedron P is unbounded, the Master LP becomes:

zM = min
∑
q∈Q

(cq)λq +
∑
r∈R

(cr)µr (2.22a)

s.t.
∑
q∈Q

(Aq)λq +
∑
r∈R

(Ar)µr = b (2.22b)

∑
q∈Q

λq = 1 (2.22c)

( λ, µ ) ≥ 0. (2.22d)

To solve it, the Restricted Master LP is initialized with a small subset of its columns

and/or artificial variables. The Column Generation Algorithm remains the same,

except on the iterations where the subproblem LP (2.7) is unbounded. In such a

case, it is assumed that the subproblem solver can provide an unbounded direction

d∗ defining a ray of P .

• For example, if the subproblem is being solved by the RSA, the vector d found

in the last RSA Step 4 (page 6) yields such a direction, which has components

−d for the current basic variables, 1 for the entering variable and zero for the

remaining non-basic variables.

Then, variable µd∗ (usually notated as µj , where j is its sequential generation

number) with cost cd∗ and column
(
Ad∗
0

)
is added to the Restricted Master LP.

The unboundedness of d∗ in the subproblem means that for any fixed x ∈ P ,

limθ→∞(c − π∗A)(x + θd∗) = −∞. This implies that (c − π∗A)d∗ < 0. So, the

added variable has a negative reduced cost. In order to say that the RMLP indeed

contains a subset of the columns in (2.22) (i.e., all generating rays are in the nor-

malized set R = ExtRay(P )), it would be possible to normalize d∗ before inserting

the corresponding column. But this is not really necessary, the algorithm remains

correct if the generating ray d∗ is not normalized. However, the used d∗ should be

kept in a side table because it may be needed for recovering the solution of the
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original LP. If an RMLP happens to be unbounded, then the MLP and the original

LP are also unbounded. As the λ variables are always limited by (2.22c), RMLP

unboundedness is only possible if some µ variables are added to it.

2.5. Subproblems with

Network Flow Structure
A network is a directed graph G = (V,A) plus arc costs ca and arc capacities ua,

a ∈ A, and vertex demands di, i ∈ V , such that
∑

i∈V di = 0 (vertices with negative

demands are sources, those with positive demands are sinks). The minimum cost

network flow problem, or simply, the Network Flow Problem (NFP) is the LP:

min z =
∑
a∈A

caxa (2.23a)

s.t.
∑

a∈δ−(i)

xa −
∑

a∈δ+(i)

xa = di i ∈ V (2.23b)

0 ≤ xa ≤ ua a ∈ A, (2.23c)

where variable xa denotes the flow on arc a. Constraints (2.23b) are known as flow

conservation equalities. There are some very efficient algorithms tailored for solving

this particular kind of LP [Kovács, 2015], one of them being the network simplex

algorithm. The network flow problem includes as particular cases the shortest path

problem, the max-flow/min-cut problem, the assignment problem, the transporta-

tion problem, and the transshipment problem. Algorithms even more specialized

for those cases can be extremely efficient. A comprehensive book on the topic is

Ahuja et al. [1993]. Network flow problems have the following integrality property :

if all demands and capacities are integer, then all extreme points of the polyhedron

defined by (2.23b–2.23c) are integer.

2.5.1. Decomposition into Flows
One of the most promising situations for a Dantzig-Wolfe reformulation in linear

programming is certainly when it yields a decomposition into subproblems having

a network flow structure. In this section, we will illustrate this using the classic
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Multi-commodity Network Flow Problem (MNFP): suppose there are K distinct

flows (each flow associated with a commodity) sharing the same arc capacities.

In other words, arc costs cka and vertex demands dki may vary depending on the

commodity k, k ∈ [K], but there is a global arc capacity ua limiting the sum of the

flows over a. The LP is:

min z =
∑
k∈[K]

∑
a∈A

ckax
k
a (2.24a)

s.t.
∑

a∈δ−(i)

xka −
∑

a∈δ+(i)

xka = dki i ∈ V, k ∈ [K] (2.24b)

∑
k∈[K]

xka ≤ ua a ∈ A (2.24c)

xka ≥ 0 a ∈ A, k ∈ [K], (2.24d)

where variable xka denotes the flow of commodity k on arc a. By keeping Constraints

(2.24c) in the master, the remaining constraints decompose into K independent

blocks. The polyhedra defined by those constraints are not bounded if G contains

cycles. In order to avoid the need to handle extreme rays, we may use the global

arc capacities as individual variable upper bounds in the subproblems. Therefore,

for each k ∈ [K], define

P k = {xk |
∑

a∈δ−(i)

xka −
∑

a∈δ+(i)

xka = dki , i ∈ V ; 0 ≤ xka ≤ ua, a ∈ A},

and Qk = Ext(P k). The vectors in Qk correspond to complete flows for commodity

k; for a given f ∈ Qk, fa is the flow value for arc a ∈ A. The resulting MLP is:

zM = min
∑
k∈K

∑
f∈Qk

(∑
a∈A

ckafa

)
λk
f (2.25a)

s.t.
∑
k∈K

∑
f∈Qk

faλ
k
f ≤ ua a ∈ A (2.25b)

∑
f∈Qk

λk
f = 1 k ∈ [K] (2.25c)

λ ≥ 0. (2.25d)

38



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Let π and ν be the dual variables associated with capacity constraints (2.25b) and

convexity constraints (2.25c) respectively. If (π∗,ν∗) is an optimal dual solution of

an RMLP, the pricing subproblem for k ∈ [K] is:

ck∗ = min
∑
a∈A

(cka − π∗
a) x

k
a − νk (2.26a)

s.t. x ∈ P k. (2.26b)

It can be solved by any minimum cost network flow algorithm, like the network

simplex.

A

B

C

D
10

5
15

6

7

6
7

2

3

8
4

k=1

k=2

Figure 2.2: A multi-commodity flow instance with two commodities.

As an example, consider a MNFP instance defined over the graph G depicted in

Figure 2.2 (the arc capacities are also shown), K = 2 and with the following costs

and demands:

arc cost (cka) vertex demand (dki )
AB AC BC BD CD A B C D

k
1 3 2 2 4 1 -6 -2 0 8
2 4 2 1 2 5 -7 0 3 4
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Solving the MLP (2.25) using the CGA, the final RMLP is:

zRM = min 24λ1
1 + 30λ2

1 + 42λ1
2 + 39λ2

2 + 50λ1
3

s.t. 4λ2
1 + 6λ1

2 + 7λ2
2 + 6λ1

3 ≤ 10

6λ1
1 + 3λ2

1 ≤ 5

2λ1
1 + 8λ1

2 + 3λ2
2 ≤ 15

4λ2
1 + 4λ2

2 + 8λ1
3 ≤ 6

8λ1
1 + 8λ1

2 ≤ 7

λ1
1 λ1

2 + λ1
3 = 1

λ2
1 + λ2

2 = 1

λ ≥ 0,

zRM = zM = 67, its optimal dual solution is π∗ = ( 0 − 3 0 0 − 1 ), ν∗ = ( 50 39 ),

while its optimal primal solution λ1
1 = 5

6 , λ
2
1 = 0, λ1

2 = 1
24 , λ

2
2 = 1, λ1

3 = 1
8 can be

converted into original flow variables, obtaining x1∗ = (x1AB x1AC x1BC x1BD x1CD ) =

( 1 5 2 1 7 ), x2∗ = (x2AB x2AC x2BC x2BD x2CD ) = ( 7 0 3 4 0 ).

2.5.2. Decomposition into Paths+Cycles
The standard DW decomposition presented above may not lead to the best way of

using CG when subproblems have a network flow structure. As already perceived in

Ford Jr and Fulkerson [1958] (see Note 2.3), potentially better CGAs can be obtained

by a reformulation that also uses another principle: any flow can be decomposed

into source-sink paths + cycles. A proof for the following result can be found in

Ahuja et al. [1993].

Theorem 2.11: Consider a network flow problem and its formulation as an LP

(2.23). Let Ω be the finite set of all elementary (not repeating vertices) paths in

G that start at a source vertex and end at a sink vertex, represented as incidence

vectors in BA. In other words, given a vector p ∈ Ω, pa indicates whether arc a ∈ A

belongs to the corresponding path. Let Θ be the finite set of all elementary cycles in

G, also represented as incidence vectors in BA. For any solution x of (2.23) there

are vectors (λ,µ) ∈ R|Ω|×|Θ|
+ such that x =

∑
p∈Ω pλp +

∑
r∈Θ rµr.
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We present an alternative way of reformulating a MNFP. Assume for the moment

that there is a single source sk and a single sink tk for each k ∈ [K]and let Ωk be

the set of sk − tk elementary paths in G, while Θ is the set of cycles in G. The

alternative Master LP is:

zM = min
∑
k∈K

∑
p∈Ωk

∑
a∈A

ckapaλ
k
p +

∑
r∈Θ

∑
a∈A

ckaraµ
k
r

 (2.27a)

s.t.
∑
k∈K

∑
p∈Ωk

paλ
k
p +

∑
r∈Θ

raµ
k
r

 ≤ ua a ∈ A (2.27b)

∑
p∈Ωk

λk
p = dtk k ∈ [K] (2.27c)

λ ≥ 0. (2.27d)

Variables λk
p and µk

r indicate how many units of flow k are carried over path p or

cycle r, respectively. The “convexity constraints” (2.27c) enforce that the demands

are satisfied. Let π and ν be the dual variables associated with (2.27b) and (2.27c)

respectively. The pricing subproblem for each k ∈ [K] can be split into two parts:

ck1∗ = min
∑
a∈A

(cka − π∗
a)pa − νk (2.28a)

s.t. p ∈ Ωk, (2.28b)

and

ck2∗ = min
∑
a∈A

(cka − π∗
a)ra (2.29a)

s.t. r ∈ Θ. (2.29b)

Both parts can be handled at once by the Bellman-Ford shortest path algorithm.

That algorithm runs in O(|V ||E|) time and can be applied to a network containing

both positive and negative cost arcs: it will either find shortest elementary paths

from a single source vertex to all other vertices or it will find a cycle with negative

cost if one exists. In this pricing context, the arc costs given to the algorithm are the

modified costs (cka − π∗
a), a ∈ A. If a negative cost cycle r∗ is found, then ck2∗ < 0,
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variable µk
r∗ has a negative reduced cost and is added to the RMLP. Of course, after

the RMLP is re-optimized µk
r∗ will not have negative reduced cost anymore. This

means that the overall effect of the µ variables is canceling possible negative cost

cycles, changing the dual variables in such a way that the Bellman-Ford algorithm

will eventually start finding shortest paths.

The advantages of decomposition into paths over decomposition into flows are:

• The pricing subproblems can be solved by the Bellman-Ford algorithm, which

is more efficient than the minimum cost flow algorithms. But one may do even

better. In many situations, it is possible to know beforehand that there are

optimal solutions of (2.23) not using cycles in their decompositions. An obvi-

ous such situation is when G is acyclic (so Θ = ∅). The shortest path problem

in acyclic graphs can be solved in linear O(|A|) time by topological sorting,

regardless of the sign of the modified arc costs. In practice, this means that

paths can be very quickly priced even on large networks. A second favorable

situation is the case where G has cycles but all original arc costs ck are non-

negative. Noting that π ≤ 0, all modified costs (cka − π∗
a) will be non-negative

too. Therefore, the pricing subproblems can be solved in O(|A|+ |V | log |V |)
by Dijkstra’s algorithm.

• The convergence of the CGA can be much faster. The reasons will be fully

explained in Chapter 7. We may advance that a RMLP from (2.27) having a

certain number of path-columns may be equivalent to a RMLP from (2.25)

having many more flow-columns, those corresponding to all the flows that can

be obtained as a combination of those paths. Another potential advantage

is that the mentioned shortest-path algorithms actually obtain the shortest

paths from a source to all other vertices in the graph. That information may be

used to identify and introduce multiple path-columns with negative reduced

costs in a single iteration, speeding up the CGA.

We now generalize this decomposition scheme for the cases where commodities may

have multiple sources and/or sinks. Let Sk and T k be the sets of source and sink

vertices for commodity k, k ∈ [K]. Let Ωk be the union of the sets of all sk − tk

elementary paths in G, sk ∈ Sk, tk ∈ T k. Let S(Ωk, i) and T (Ωk, i) be the subsets
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of paths in Ωk that start and end in a vertex i, respectively. The MLP is:

min
∑
k∈K

∑
p∈Ωk

∑
a∈A

ckapaλ
k
p +

∑
r∈Θ

∑
a∈A

ckaraµ
k
r

)
(2.30a)

s.t.
∑
k∈K

∑
p∈Ωk

paλ
k
p +

∑
r∈Θ

raµ
k
r

)
≤ ua a ∈ A (2.30b)

∑
p∈T (Ωk,i)

λk
p = di k ∈ [K], i ∈ T k (2.30c)

∑
p∈S(Ωk,i)

λk
p = −di k ∈ [K], i ∈ Sk (2.30d)

λ ≥ 0. (2.30e)

Note that, for each k ∈ K, one constraint in (2.30c) or in (2.30d) may be chosen

to be eliminated from the MLP since it is implied by the remaining constraints.

Let (π,ν,η) be the vectors of dual variables corresponding to (2.30b), (2.30c), and

(2.30d) respectively. The pricing subproblem k ∈ K can be solved as a shortest

s − t path over a modified graph G′ = (V ′, A′), where V ′ = V ∪ {s, t} and A′ =

A ∪ {(i, t) : i ∈ T k} ∪ {(s, i) : i ∈ Sk}. The cost of an arc a ∈ A is (cka − π∗
a);

arc (i, t), i ∈ T k, receives cost ν∗i , and arc (s, i), i ∈ Sk, gets cost η∗i . Note that

every s − t path in G′ passes by exactly one arc leaving s and by exactly one arc

entering t. Therefore, it is possible to avoid possible negative costs in those arcs in

A′ \ A (if the arcs in A have non-negative costs and one wants to use Dijkstra’s

algorithm) by adding a suitable positive constant to all of them. That would not

change the shortest paths. Of course, later it is necessary to subtract two times the

added constant from the optimal solution value in order to determine if a path leads

to a variable with negative reduced cost.

Consider again the MNFP instance depicted in Figure 2.2. Solving the MLP

(2.30) using the CGA, the fourth iteration RMLP is:
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zRM = min 99a1 3λ1
1 +2λ2

1 +6λ1
2 +5λ2

2 +3λ1
3 +6λ2

3

s.t. λ1
2 +λ2

2 +λ2
3 ≤ 10

λ1
1 +λ2

1 ≤ 5

λ1
2 +λ2

2 +λ1
3 ≤ 15

λ2
3 ≤ 6

λ1
1 +λ1

2 +λ1
3 ≤ 7

a1 +λ1
1 +λ1

2 +λ1
3 = 8

λ2
1 +λ2

2 = 3

+λ2
3 = 4

λ1
1 +λ1

2 = 6

λ ≥ 0,

The RMLP has five capacity constraints, three constraints corresponding to

(2.30c) and only one constraint related to (2.30d) (the two omitted constraints

in (2.30d), one for each commodity, are redundant). The optimal dual solution is

π∗ = ( 0 − 3 0 0 − 96 ), ν∗ = ( 99 5 6 ), η∗ = ( 3 ) with zRM = 162. Figures 2.3a and

2.3b show the graphs corresponding to the shortest s− t-path pricing subproblems,

the modified arc costs are also shown. For k = 1, a negative cost path s−B−D− t

with c1∗ = −95 is found. A new variable λ1
4 corresponding to path B −D ∈ Ω1 is

added to the RMLP. For k = 2, no negative cost path exists. The 5-th iteration

RMLP dual solution is π∗ = ( 0 − 3 0 0 − 1 ), ν∗ = ( 4 5 6 ), η∗ = ( 3 ) with

zRM = 67. The subsequent pricing subproblems find no paths with negative cost,

so zM = zRM. The optimal primal solution is λ1
1 = 5, λ2

1 = 0, λ1
2 = 1, λ2

2 = 3, λ1
3 =

1, λ2
3 = 4, λ1

4 = 1. By converting it into the original arc flow variables, we obtain:

x1 = (x1AB x1AC x1BC x1BD x1CD ) = 5( 0 1 0 0 1 ) + ( 1 0 1 0 1 ) + ( 0 0 1 0 1 ) +

( 0 0 0 1 0 ) = ( 1 5 2 1 7 ); similarly, x2 = (x2AB x2AC x2BC x2BD x2CD ) = 3( 1 0 1 0 0 ) +

4( 1 0 0 1 0 ) = ( 7 0 3 4 0 ).

44



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

A

B

C
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π
∗
1
)=

3

(2−π ∗
2 )=5

(2−π∗
3)=2

(4−π ∗
4 )=4

(1−
π
∗
5
)=

97
−η∗1=−3

0

−ν∗1=−99

(a) k = 1

A

B

C

Ds t

(4−
π
∗
1
)=

4

(2−π ∗
2 )=5

(1−π∗
3)=1

(2−π ∗
4 )=2

(5−
π
∗
5
)=

10
1

0

−ν
∗
2
=−5

−ν∗3=−6

(b) k = 2

Figure 2.3: Graphs for shortest s − t path pricing subproblems. Modified costs for
the 4th CGA iteration are shown.

2.6. Case Study: Public Transportation

Planning
Salimifard and Bigharaz [2022] surveys 263 articles published between 2000 and

2019 on the MNFP, divided into applications (mostly in logistics and telecommu-

nications) and methodology. Many of the considered MNFPs have an underlying

space-time network, which is a modeling device that introduces a temporal dimen-

sion into flows. In these networks, individual vertices represent various time instants

at each spatial location. This results in much more accurate models in situations

where time is a critical factor, but often leads to very large LPs that may need col-

umn generation to be solved. In some cases, the application actually requires integer

solutions. However, although the MNFP formulation does not have the integrality

property it is usually very strong (in the sense defined in Chapter 3), and obtain-

ing near-optimal integer solutions is not hard once an optimal fractional solution is
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found. So, even in those cases, the bottleneck is solving LP (2.24).

In order to be more concrete, we will present a case study, describing a recent

use of CG in solving some large-scale MNFPs. Lienkamp and Schiffer [2024] consider

Munich’s Public Transportation System in Germany, a complex interplay of buses,

subways, and trams. In that system, buses have a capacity of 60 passengers, subway

trains can accommodate up to 940 passengers, and trams can hold 215 passengers.

The MNFP over a space-time network model assumes that the transportation sched-

ules are already given and looks for the best ways of utilizing the system to meet

the existing set of demands. In fact, the model works as a tactical planning tool,

evaluating how possible changes in the fleets and the schedules would impact the

quality of service. In that context, as stated by the authors: “to analyze large trans-

portation system’s optima and thus the potential of different transportation systems,

finding fractional solutions often suffices”. Yet, after the MNFP is optimally solved

by a CGA, integer solutions of excellent quality can be quickly found by solving the

final RMLP as an IP.

There are K demands, which correspond to the commodities. A demand k ∈ K

is characterized by:

• Origin location and time – for example, a suburban block at 7:15.

• Destination location – for example, a downtown block.

• Max transit time – arrivals at the destination after origin time plus max transit

time are penalized.

• Number of passengers - the authors actually work with unitary demands but

scale the capacities. However, dividing the capacities by a factor b is equivalent

to having demands with b passengers.

Note that values of K in the range of hundreds yield a rough model where each

demand aggregates many individual passengers. Accurate modeling requires much

larger values of K. The space-time network contains walking arcs (for example,

starting at 7:15 at a certain origin location and ending at 7:19 at a bus stop A),

waiting arcs (say, a 5-minute wait at the bus stop A), and bus/tram/subway trans-

portation arcs (for example, a bus leaving stop A at 7:24 and arriving at stop B at

7:27). Only transportation arcs are capacitated.

We reproduce some computational results. Table 2.1 shows a comparison of the

CG approach with a direct solution by commercial solver Gurobi 9.5, stopped at the
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first integer solution. The CG results were obtained by a basic implementation that

uses Dijkistra’s algorithm to solve the pricing subproblems. The reported times are

averages over 10 instances. Gurobi ran out of memory in 8 instances with K = 662,

indicating that it could not handle larger values of K. The substantial time spent on

building model (2.24) (longer than the time taken by Gurobi to solve it) is partially

explained by the use of the less-performing Python language for that task. However,

this is essentially due to the fact that the model contains K copies (with different

sources, sinks, and costs) of a large time-space network. On the other hand, that

network only needs to be built once for the CG approach.

Table 2.1: Comparison of a MIP solver and CG

K 132 308 486 662

Method CG Gu CG Gu CG Gu CG Gu

Solved instances 10 10 10 10 10 10 10 2

Avg. build time (s) <1 48 <1 142 <1 315 <1 553

Avg. solving time (s) 1 33 3 109 6 228 10 463

Avg. total time (s) 1 82 3 252 6 542 10 1016

Source: Lienkamp and Schiffer [2024].

Table 2.2 presents results for much larger values of K, up to 56,295. Again, times

are averages of over ten instances. Those runs correspond to a more sophisticated

CG implementation that uses an A* algorithm in the pricing and a filter for select-

ing the subproblems that will be solved in each iteration (in the last iteration all

subproblems should be solved to ensure optimality). The times to solve the final

RMLP as an IP is indicated. In all tests, the integer solution thus found had a value

that matched the LP value, so it was optimal. The overall conclusion of that case

study is that a CG approach may solve in reasonable time some LPs far too big to

even fit into the memory of a modern computer.

2.7. Assessment of Column Generation

for solving LPs
We finish this chapter by commenting on the question: Is Dantzig-Wolfe reformula-

tion and Column Generation a good practical alternative for solving an LP, when
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Table 2.2: CG results on large instances

K 6,255 18,765 31,275 43,785 56,295

Solved instances 10 10 10 10 10

Avg. total time (s) 66 370 900 1766 2856

Avg. IP time (s) 1.8 4.0 5.0 3.9 4.6

Avg. optimality gap 0.0% 0.0% 0.0% 0.0% 0.0%

Source: Lienkamp and Schiffer [2024].

compared with solving the original LP directly using a simplex or interior-point-

based algorithm?

• If the decomposition leads to a single subproblem (instead of leading to multi-

ple, distinct or identical, subproblems) and that problem has to be solved by a

general LP solver (no special structure to be exploited), the answer is simple:

“No!”. As will be seen in Chapter 5 and Chapter 7, the single subproblem

case usually leads to a very poor convergence of the CGA. Solving a relatively

large subproblem LP many times is just too time-consuming.

• If the decomposition leads to multiple subproblems, the answer is “Perhaps.

You should test.”. The more subproblems, the better the expected convergence

of the CGA, and the smaller those subproblems. If the subproblems have a

structure that allows them to be solved by faster specialized algorithms, us-

ing these algorithms definitely helps a lot. A network flow structure in the

subproblems is particularly favorable due to the possibility of using shortest

path algorithms for the pricing (like in the case study in Section 2.6). How-

ever, the best modern general LP solvers are highly efficient and may still be

competitive in solving the original LP, even with a structure favorable to the

Dantzig-Wolfe decomposition. In several cases (see Note 2.13), the CGA only

beats state-of-the-art simplex-based algorithms if the subproblems are solved

in parallel, using multiple processors or cores. The potential for natural and

easy parallelization is another important feature of a DW decomposition.

48



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

The Dantzig-Wolfe reformulation and column generation for pure

linear programming can be viewed as niche techniques, that beat

standard LP solvers only in certain kinds of problems. However,

those techniques may play a much more central role in integer pro-

gramming and combinatorial optimization, as will be seen in Chap-

ter 4.

Notes

2.1. Proofs for all basic polyhedral results in this chapter can be found in Bazaraa

et al. [2010]. Theorem 2.10 (its particular case for bounded polyhedra was

stated as Theorem 2.4) is known as Minkowski-Weyl Theorem.

2.2. The reformulation and decomposition method for general LPs by Dantzig

and Wolfe [1960] was inspired by the previous work by Ford Jr and Fulkerson

[1958] on the decomposition of LPs having a certain multi-commodity network

flow structure. Dantzig and Wolfe proposed solving the Master LP using the

modified RSA. Some authors attribute the Column Generation Algorithm,

where RMLPs are solved by a black-box LP solver, to Cheney and Goldstein

[1959] and Kelley, Jr [1960], as their cutting plane algorithm can be used for

solving the dual of a Master LP (see Section 5.3.2). Yet, those original works

were intended to solve other kinds of problems not related to Dantzig-Wolfe

reformulation. The expression Column Generating Procedure already appears

in Gilmore and Gomory [1963], but Column Generation Algorithm become

more popular after Appelgren [1969].

2.3. Ford Jr and Fulkerson [1958] proposed their early CG algorithm for the fol-

lowing maximum multi-commodity flow problem: given a graph G = (V,A)

with arc capacities ua, a ∈ A and K commodities, commodity k ∈ [K] having

49



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Sk and T k as their source and sink sets, respectively; find a maximum total

flow. They formulated that problem as:

max
∑
k∈K

∑
p∈Ωk

λk
p (2.31a)

s.t.
∑
k∈K

∑
p∈Ωk

pa λk
p ≤ ua a ∈ A (2.31b)

λ ≥ 0. (2.31c)

where Ωk is the set of all paths that start at a vertex in Sk and end at a vertex

in T k. They realized that, in spite of the huge number of variables, those LPs

could be solved by the RSA, using the shortest path algorithm to perform the

pricing step.

Curiously, their main motivation for the CG approach was not reducing CPU

time. They noticed that large maximum multi-commodity flow problems could

not be handled as standard LPs (2.24) by the simplex method since their base

matrices would not even fit in the main memory of the computers then avail-

able. They mentioned a hypothetical instance with 50 vertices, 100 arcs, and 20

commodities. In that case, there would be 1000 constraints in (2.24b) and 100

constraints in (2.24c), so a simplex basis would have dimension 1100× 1100.

On the other hand, the proposed LP with path variables would have bases

of dimension 100 × 100. Ford Jr and Fulkerson [1958] finishes with: “Except

for hand computation for a few small problems, we have no computational

experience with the proposed method. Whether the method is practicable ... is

a question that can only be settled by experimentation.”

2.4. Dantzig and Wolfe [1960] also does not provide computational experiments on

their proposed general LP decomposition method, only pointing out the cases

where it “holds promise for the efficient computation of large-scale systems”.

The article also discusses the economic and game-theoretical implications of

the DW decomposition: it shows that it is possible to obtain global optimal

decisions in a system where a central planning agency (the Master LP) only

communicates with a set of autonomous agents (the subproblems) by itera-

tively setting prices for shared resources (the dual variables) and receiving
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optimal production offers (the columns).

2.5. Farkas Pricing. An alternative to introducing artificial variables with very

large costs to an RMLP, avoiding the issues of choosing those costs (see Note

1.5), is the so-called Farkas pricing. It is based on Farkas’ Lemma (a demon-

stration can be found in Schrijver [1986]), which affirms that exactly one of

the following statements is true: i) there exists a feasible solution λ to an

RMLP in format (2.8), and ii) there exist multipliers u ∈ R1×m and v ∈ R+

such that

uAq + v ≤ 0, ∀q ∈ S, and ub+ v > 0. (2.32)

Farkas’ Lemma, despite being called a “lemma”, is a deep result that can even

be used for deriving LP strong duality (Theorem 1.3). If an RMLP (2.8) is

infeasible, most LP solvers can provide Farkas multipliers (u∗, v∗) satisfying

(2.32). To invalidate that certificate of infeasibility, one needs to enlarge S

with q′ ∈ Q \ S, such that u∗Aq′ + v∗ > 0. Thus, the Farkas pricing problem

is:

c∗ = min − u∗Ax− v∗ (2.33a)

s.t. x ∈ P. (2.33b)

If c∗ < 0, the variable λx∗ corresponding to the optimal solution x∗ is added

to the RMLP, otherwise, it is proved that the full Master LP is infeasible.

Gamrath [2010] gives a more detailed explanation of the Farkas pricing. We

remark that if an RMLP contains inequalities, it is unnecessary to convert

them to equalities to get a vector of Farkas multipliers in case of infeasibility.

The only difference is that the multipliers corresponding to ≥ constraints

should be non-negative, while those corresponding to ≤ constraints should

be non-positive. In any case, the Farkas multipliers can be used for deriving,

from the RMLP constraints, a single inequality that obviously does not have

solutions. So, they work as a certificate of infeasibility. For example, consider
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the following possible RMLP:

zRM = min 4λ1 − λ2 + 3λ3

s.t. 6λ1 − λ3 = 5

3λ1 + 2λ2 + 2λ3 ≥ 4

λ1 + λ2 + λ3 ≤ 1

λ ≥ 0.

A vector of Farkas multipliers that certificates its infeasibility is (u∗, v∗) =

(−1 7 −15 ). Applying the multipliers to each constraint and summing them,

we get:

−1 × ( 6λ1 − λ3 = 5 )

7 × ( 3λ1 + 2λ2 + 2λ3 ≥ 4 )

−15 × ( λ1 + λ2 + λ3 ≤ 1 )

0λ1 − λ2 + 0λ3 ≥ 8.

As λ ≥ 0, the LHS of the derived inequality can never be positive, so, it is

clear that the RMLP is indeed infeasible. So, (u∗, v∗) can be used for defining

the next Farkas pricing subproblem (2.33), which will either generate a new

column that will invalidate (u∗, v∗) as a certificate of infeasibility or prove

that the full MLP is also infeasible.

This elegant initialization scheme is not much adopted in practice. One of the

reasons is that, as will be seen in Chapter 7, artificial variables may also be

used for improving CG convergence.

2.6. Recovering the original LP dual solution. Suppose that we perform a

DW reformulation over an original LP and solve the resulting MLP using the

CGA. As already shown, the optimal MLP primal solution can be converted

into an optimal primal solution of the original LP. What is less known is that

the CGA readily provides an optimal dual solution for the original LP.

Theorem 2.12: Let OLP ≡ min z = cx subject to Ax = b, Dx ≥ d,x ≥ 0.

Assume that OLP has optimal solutions with value z∗ and consider the MLP

obtained from it by a DW reformulation that keeps Ax = b in the master. Let

(π∗, ν∗) be the optimal dual solution of that MLP found by the CGA and let
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ρ∗ be the optimal dual solution of the last subproblem LP (the one that yields

c∗ = 0). Then, (π∗,ρ∗) is an optimal dual solution to OLP.

Proof. The dual of OLP is DOLP ≡ maxπb+ ρd subject to πA+ ρD ≤
c, ρ ≥ 0. The dual of the last subproblem LP is DSLP ≡ max c = ρd − ν∗

subject to ρD ≤ c−π∗A, ρ ≥ 0. Therefore, π∗A+ρ∗D ≤ c and ρ∗ ≥ 0. So,

(π∗,ρ∗) is a feasible solution of DOLP. As (π∗, ν∗) is an optimal MLP dual

solution, z∗ = π∗b+ ν∗. As c∗ = 0, ρ∗d = ν∗. Therefore, π∗b+ ρ∗d = z∗ and

(π∗,ρ∗) is an optimal solution of DOLP.

The above result remains valid regardless of the actual sense (≤, =, or≥) of the
constraints that are kept in the master or go to the subproblem. However, its

generalization for the case of multiple subproblems in left as Exercise E 2.19.

2.7. Non-subproblem variables. Consider an LP in the following format:

min z = cx + dy (2.34a)

s.t. Ax + Dy = b (2.34b)

x ∈ P, (2.34c)

where P is a bounded polyhedron represented by a set of linear constraints

only over the x variables. Performing the DW decomposition of (2.34) that

keeps (2.34b) in the master, the resulting Master LP is:

zM = min
∑
q∈Q

(cq)λq + dy (2.35a)

s.t.
∑
q∈Q

(Aq)λq +Dy = b (2.35b)

∑
q∈Q

λq = 1 (2.35c)

λ ≥ 0, (2.35d)

where Q = Ext(P ). This means that there are cases where part of the original

variables remain in the MLP. The pricing subproblem for generating the λ

variables still has the format (2.7a).
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This case illustrates the following taxonomy of the variables involved in a DW

reformulation, depicted in Figure 2.4. In the first level, we have the original

variables and the Master variables. The original variables are either subprob-

lem variables, those that are used in the definition of P and also appear in the

pricing subproblems (notated as the x variables in (2.34)), or non-subproblem

variables (notated as y variables in (2.34)). The Master variables are either

generated variables, those that are associated with points in P and may be

dynamically generated during the CGA (the λ variables in (2.35)), or non-

subproblem variables (the same y variables).

Non–Subproblem

variables

Original

variables

Master

variables

Subproblem

variables

Generated

variables

Figure 2.4: Taxonomy of the variables involved in a DW reformulation

2.8. Block-diagonal and block-angular structures. Some authors refer to

the multiple subproblems case as the case where the subproblem has a block-

diagonal structure. In fact, the coefficients in the left-hand side of the linear

equations defining the U independent subproblems in (2.11c) correspond to

a block-diagonal matrix, a structure schematized in Figure 2.5a. In Example

(2.21), that matrix (not including the variable non-negativity constraints) has

the following non-zero elements:
1 1

3 1

1 1

1 1

3 1

 .

Equivalently, some authors refer to the multiple subproblems case as the case

where the full matrix formed by the coefficients in the left-hand side of (2.11b)-
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(2.11c) has a block-angular structure, as depicted in Figure 2.5b.

(a) Block-diagonal (b) Block-angular (c) Double-block-angular

Figure 2.5: Schematic representation of some matrix structures. The dashed areas
indicate where non-zero coefficients may appear.

2.9. Double-block-angular structures. Consider an LP in the following for-

mat:

min z = c1x1 + · · ·+ cUxU + dy (2.36a)

s.t. A1x1 + · · ·+AUxU +Dy = b (2.36b)

(xu,y) ∈ P u u ∈ [U ]. (2.36c)

In principle, a DW reformulation keeping (2.36b) in the Master would not

lead to a decomposable subproblem, since the y variables are shared between

the U blocks. In this case, the full matrix formed by the coefficients in the

left-hand side of (2.36b)-(2.36c) has a double-block-angular structure, a.k.a.

double-bordered block-diagonal structure (the rows in (2.36b) and the columns

corresponding to the y variables define the “double-borders”), as schematized

in Figure 2.5c.

However, assume that there are not so many y variables. A trick for obtaining

a decomposition into U blocks (similar to a technique known as Lagrangian

decomposition [Guignard and Kim, 1987]) is to introduce U − 1 copies of the
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y variables and rewrite the LP as follows:

min z = c1x1 + · · ·+ cUxU + dy1 (2.37a)

s.t. A1x1 + · · ·+AUxU +Dy1 = b (2.37b)

yu = yu+1 u ∈ [U − 1] (2.37c)

(xu,yu) ∈ P u u ∈ [U ]. (2.37d)

The problem with having too many y variables in (2.36) is that the additional

equalities (2.37c) in the Master LP can make the convergence very slow. An

alternative idea [Poggi de Aragão and Uchoa, 2003, Bergner et al., 2015, Chen

et al., 2024] is working directly with the following explicit master LP:

min z = c1x1 + · · ·+ cUxU + dy (2.38a)

s.t. A1x1 + · · ·+AUxU +Dy = b (2.38b)

(xu,y) =
∑
q∈Qu

qθuq u ∈ [U ] (2.38c)

∑
q∈Qu

θuq = 1 u ∈ [U ] (2.38d)

θ ≥ 0. (2.38e)

CG Convergence for solving (2.37) may also be problematic (see Note 4.17).

2.10. Benders decomposition for LP. Consider an LP in the following format:

min cx+
∑
u∈[U ]

fuyu (2.39a)

s.t. Aux+Duyu ≥ bu u ∈ [U ]. (2.39b)

Note that its constraint matrix has a structure that is the transpose of the

block angular structure found in (2.11). Let πu, u ∈ [U ], be row vectors of
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dual variables associated with (2.39b). The dual of (2.39) is:

max
∑
u∈[U ]

πubu (2.40a)

s.t.
∑
u∈[U ]

πuAu = c (2.40b)

πuDu = fu u ∈ [U ] (2.40c)

πu ≥ 0 u ∈ [U ]. (2.40d)

A DW reformulation of it that keeps (2.40b) in the master obtains:

zM = max
∑
u∈[U ]

∑
q∈Qu

(q⊺bu)λu
q +

∑
u∈[U ]

∑
r∈R

(r⊺bu)µu
r (2.41a)

s.t.
∑
u∈[U ]

∑
q∈Q

(q⊺Au)λu
q +

∑
u∈[U ]

∑
r∈R

(r⊺Au)µu
r = c (2.41b)

∑
q∈Qu

λu
q = 1 u ∈ [U ] (2.41c)

λ, µ ≥ 0, (2.41d)

where Qu = Ext(P u = {πuDu = fu,πu ≥ 0}) and Ru = ExtRay(P u).

The dual of (2.41), considering x and z as column vectors of dual variables

associated with (2.41b) and (2.41c), respectively, is:

zBM = min cx +
∑
u∈[U ]

zu (2.42a)

s.t. (q⊺Au)x+ zu ≥ (q⊺bu) u ∈ [U ], q ∈ Qu (2.42b)

(r⊺Au)x ≥ (r⊺bu) u ∈ [U ], r ∈ Ru. (2.42c)

We have just derived the so-called Benders decomposition for LP, which is

fully equivalent to a DW decomposition over the dual problem. The resulting

Master Benders LP (2.42) is often expressed in the following format:

zBM = min cx+
∑
u∈[U ]

zu (2.43a)

s.t. zu ≥ q⊺(bu −Aux) u ∈ [U ], q ∈ Qu (2.43b)

r⊺(bu −Aux) ≤ 0 u ∈ [U ], r ∈ Ru. (2.43c)
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This LP may be very large, so it has to be solved by row generation. A Re-

stricted Master Benders LP (RMBLP) only contains a small subset of its

constraints and may include some artificial constraints to prevent unbound-

ness. Given an optimal solution (x∗, z∗) to a RMBLP, for each u ∈ [U ], the

following subproblem LP is solved:

ζu∗ = max πu(bu −Aux∗) (2.44a)

s.t. πuDu = fu (2.44b)

πu ≥ 0. (2.44c)

If (2.44) is unbounded, the LP solving method should provide r∗∈ExtRay(P u)

such that r∗⊺(bu −Aux∗) > 0. So, the corresponding constraint in (2.43c) is

violated and is added to the RMBLP. In Benders’ context, this is called a

feasibility cut for the following reason. The unboundedness of (2.44) proves

(by weak LP duality) that Duyu ≥ bu − Aux∗ has no solutions. Therefore,

the “tentative solution” x∗ would lead to infeasibility in (2.39) and should be

corrected. If z∗u < ζu∗ <∞ then an optimal solution π∗ = q∗ ∈ Ext(P u) finds

a violated constraint in (2.43c), which is known as an optimality cut. In this

case, the reason is that variable zu should carry the correct cost ζu∗=min fuyu

s.t. Duyu ≥ bu −Aux∗ induced by x∗ on subproblem u.

Benders decomposition greatly extends the range of applications of LP decom-

position. For example, it is particularly well-suited for stochastic programming

where uncertainty in the parameters (such as demand, supply, costs, etc.) is

modeled using scenarios. Consider a two-stage stochastic LP where vector x

represents decisions that should be made now and vector y represents addi-

tional decisions that will be made in the future, after the uncertain parameters

are revealed. The idea is to consider U possible scenarios for those parame-

ters. For each scenario u ∈ [U ], let pu be its probability and let yu denote the

corresponding second-stage decisions. One may set an LP having the following

format:

min cx +
∑
u∈[U ]

puf
uyu (2.45a)

s.t. Aux+Duyu ≥ bu u ∈ [U ], (2.45b)
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where fu, Au, Du, and bu may depend on the parameters of scenario u ∈
[U ]. The objective function (2.45a) minimizes the expected total cost over all

scenarios. Note that properly sampling a few dozen uncertain parameters may

already require values of U in the range of thousands. So, the resulting LPs

may be very large. Happily, a Benders decomposition of (2.45) (equivalent

to a DW decomposition of its dual), together with computer parallelism and

sophisticated sampling, may provide practical solution methods for huge two-

stage stochastic LPs (see Section 6.5 of Bertsimas and Tsitsiklis [1997]).

2.11. A beginners’ implementation mistake. As mentioned in Note 1.6, mod-

ern LP solvers treat bounds over individual variables in a special way. Those

bounds may be already included in the variable definition instead of being

given as explicit constraints. Suppose that is known that all generated vari-

ables λ will have values between 0 and 1, perhaps because there is a con-

vexity constraint. When including newly generated variables into the RMLP,

one should not define them as having upper bound 1 (instead, the provided

bounds should be [0 , +∞]). The reason is that the implicit constraints in

format λj ≤ 1 have hidden dual variables (actually, those dual values may be

recovered from the provided reduced costs, see Exercise E 3.3). Those hidden

dual variables have value zero in most iterations, and therefore, they are easily

overlooked. However, at some seemingly random iteration, one of those hidden

dual variables “robs” the value of another explicit dual variable, perhaps the

ν variable associated with the convexity constraint. The result is a nasty bug

in a CG code.

2.12. Flow decomposition as a DW decomposition. In most cases where

subproblems exhibit a network flow structure, the additional use of the de-

composition of flows into paths+cycles, given in Theorem 2.11, enhances the

efficiency of CGAs. A comprehensive analysis and experimental results sup-

porting this assertion can be found in Jones et al. [1993]. It might raise a

question for readers: is flow decomposition a variant of DW decomposition, or

is it a separate principle altogether? The answer aligns with the former. Below,

we provide an interpretation of flow decomposition as a DW decomposition.
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We start by noticing that a network flow problem with multiple sources and/or

sinks can be transformed into an equivalent problem with a single sink and a

single source. Let S and T be the sets of source and sink vertices respectively.

Define a modified graph G′ = (V ′, A′), where V ′ = V ∪ {s, t} and A′ =

A ∪ {(s, i) : i ∈ S} ∪ {(i, t) : i ∈ T}. The modified demands d′ are zero,

except that d′s =
∑

i∈S di and d′t =
∑

i∈T di. The original arc costs are not

changed, new arcs have zero cost. The original arc capacities are not changed,

but an arc (s, i), i ∈ S has capacity −di and an arc (i, t), i ∈ T has capacity

di.

Consider a network flow problem over a graph G′ with a single source s and

single sink t (with demand d′t) and its corresponding LP (2.23). Apply a DW

reformulation that keeps constraints xa ≤ ua, a ∈ A′, in the master and let the

remaining constraints define polyhedron P . It can be proved (left as an exer-

cise) thatQ = Ext(P ) = {d′tχ(B) |B ⊆ A′ is an elementary s−t path in G′}
and that ExtRay(P ) = {χ(C)/|C| |C ⊆ A′ is an elementary cycle in G′}.
Consider the sets Ω and Θ defined in the enunciate of Theorem 2.11. Sets

ExtRay(P ) and Θ correspond to the same extreme rays, so the latter can be

used for defining the resulting MLP:

min
∑
p∈Q

(∑
a∈A

capa

)
λp +

∑
r∈Θ

(∑
a∈A

cara

)
µr (2.46a)

s.t.
∑
p∈Q

paλp +
∑
r∈Θ

raµr ≤ ua a ∈ A (2.46b)

∑
p∈Q

λp = 1 (2.46c)

( λ, µ ) ≥ 0. (2.46d)

Scaling the λ variables we obtain an equivalent MLP defined over sets Ω and
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Θ:

min
∑
p∈Ω

(∑
a∈A

capa

)
λp +

∑
r∈Θ

(∑
a∈A

cara

)
µr (2.47a)

s.t.
∑
p∈Ω

paλp +
∑
r∈Θ

raµr ≤ ua a ∈ A (2.47b)

∑
p∈Ω

λp = d′t (2.47c)

( λ, µ ) ≥ 0. (2.47d)

Then, the path+cyle decomposition theorem can be viewed as the translation

of those MLP solutions into the original arc flow variables:

x =
∑
p∈Ω

pλp +
∑
r∈Θ

rµr.

2.13. Is it worthy to solve LPs by CG using an LP solver as pricer? Sev-

eral methods that applied DW decomposition and CG to certain LPs with

block-angular structure (but no particular structure in the subproblems, so

pricing still has to be performed by an LP solver) were proposed during the

1960s and 1970s, as surveyed in Ho and Loute [1981]. Those authors asserted

that the overall results so far had not been very encouraging when compared

with applying the Simplex method directly to the original LP. One of the rea-

sons was that the Simplex implementations at the time were already good at

handling the sparse basis matrices corresponding to LPs with block-diagonal

substructures. On the other hand, the CGA often suffered from slow conver-

gence. Ho and Loute [1981] then proposed DECOMPSX, a sophisticated and

general implementation that did better than the existing LP codes on some

problems that could be decomposed into many subproblems.

The situation has not changed much in the last 40 years. While the CGA

implementations improved a lot, so did the Simplex (and later, interior-point)

LP implementations. We provide some examples of papers where a CGA im-

plementation could beat the best available general LP solvers on particular

LP problems.

Rosen and Maier [1990] and Entriken [1996] showed that DW decomposition
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together with parallelization could outperform simplex algorithm implemen-

tations of those times. Tebboth [2001] did a comprehensive implementation of

DW decomposition, in which many known and new computational strategies

were used. When using a computer with seven processors, in some instances, it

could obtain a speed-up of five in comparison with the Xpress-MP commercial

LP solver. Rios [2013] presented another parallel implementation of the DW

decomposition, which largely outperformed CPLEX solver in some instances.

The standalone C code based on the GLPK LP solver is publicly available

together with the paper. Rios and Ross [2010], Wei et al. [2013] discussed the

successful application of parallel DW decomposition to air traffic management

problems formulated as linear programs. Finally, we can cite a relatively re-

cent review Chung [2011] on DW decomposition for linear programs, which

also discusses computational issues.

To our opinion, the following quotation from Tebboth [2001] still summarizes

well the place of DW decomposition as a general LP solving tool. “Dantzig-

Wolfe decomposition will not rival mainstream techniques as an optimization

method for all LP problems. But it does have some niche areas of application:

certain large-scale classes of primal block angular structured problems, and in

particular where the context demands rapid results using parallel optimization

or near-optimal solutions with guaranteed quality. For such problems, decom-

position offers the capability to solve them in a much quicker time than would

otherwise be possible, providing evidence that, no matter what increases in raw

computing power and resources occur in the future, there will be a class of ap-

plications, perhaps of ever-increasing size and scope, for which decomposition

is the solution method of choice.”

2.14. LPs that have to be solved by CG. In the probabilistic logic created by

Nilsson [1986] for use in artificial intelligence expert systems, facts and clauses

have probabilities of being true. Checking whether a given set of probabilities is

consistent or finding the smallest changes to those probabilities to make them

consistent can be done by solving a huge LP, with the number of variables

growing exponentially with the number of basic facts.

Jaumard et al. [1991] proposed a very effective CGA for solving these LPs.

However, the pricing subproblem is not defined by another LP. Instead, it cor-
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responds to a Weighted Max-SAT, an NP-hard combinatorial problem. This

type of subproblem is typical when using CG to solve integer programs, as will

be seen in Chapter 4. Despite that, this interesting application is still classified

as column generation for LPs, since it is being used to solve a problem defined

over continuous variables, and no branching is necessary. It is an example of

a case where an LP must be solved by CG because there is no known original

compact LP.

Exercises

E2.1. Use the CGA for solving the MLP (2.5). RMLPs and the subproblems

may be solved by any LP solver. Convert the primal solution of each RMLP

into points in the x space and locate them in the cartesian plane shown in

Figure 2.1. Draw a cartesian plane depicting the set of feasible dual MLP

solutions. Locate the dual solution of each RMLP.

E2.2. Consider the following LP:

max z = 7x1 + 3x2

s.t. x1 + x2 ≤ 4

2x1 ≤ 5

x1 + 4x2 ≥ 4

−x1 + x2 ≤ 3

x1 − 2x2 ≤ 2

x ≥ 0.

Its set of feasible solutions is depicted in dark area in Figure 2.6. Consider

a DW reformulation that keeps the first three constraints in the master.

The resulting unbounded polyhedron P is shown in light blue in that pic-

ture. Obtain sets Ext(P ) and ExtRay(P ) and write the resulting explicit

reformulated LP. Solve that LP.
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x1

x2

Figure 2.6: DW decomposition of the LP in E 2.2

E2.3. Use the CGA for solving the MLP from the previous exercise. Convert

the primal solution of each RMLP into points in the x space and locate

them in the cartesian plane.

E2.4. Consider the following LP:

max z = x1 + 7x2 + 2x3 + 3x4

s.t. 4x1 + 2x2 + 2x3 + 3x4 ≤ 30

x1 + x2 + x3 + 2x4 = 15

2x1 + 3x2 − 7x3 − 6x4 = 0

− x2 + 2x3 ≤ 0

x2 − 2x3 − 2x4 ≤ 0

− x2 + 3x3 + 2x4 ≤ 2

x ≥ 0.

Let P be the polyhedron defined by the 3rd, 4th, 5th, and 6th constraints,

plus the variable non-negativities, Ext(P ) = { ( 0 0 0 0 ), ( 3 0 0 1 ),

( 1 4 2 0 ) } and ExtRay(P ) = { ( 0 2/3 0 1/3 ) }. Write the complete

MLP obtained by a DW reformulation that keeps the first two constraints

in the master. Solve that MLP and then convert its primal solution into a

solution of the original LP.
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E2.5. Use the DW reformulation (by keeping the first two constraints in the

master) and the CGA to solve the original LP in the previous exercise.

Remember that on maximization problems the artificial variables should

have large negative costs. Get optimal primal and dual (see Note 2.6)

solutions for the original LP.

E2.6. Consider the following LP:

min z = −x1 + 3x2 − 6x3 − 7x4 + 9x5

s.t. x1 + 2x2 − x4 + 3x5 = 36

− x2 + 2x3 ≤ 6

x1 + x2 + x3 ≤ 10

2x4 + x5 ≤ 22

x5 ≤ 10

3x4 + x5 ≤ 30

x ≥ 0.

By performing a DW reformulation keeping only the first constraint in

the master, the subproblem decomposes into two subproblems, defined by

polyhedra P 1 = Conv({( 0 0 0 ), ( 0 0 3 ), ( 10 0 0 ), ( 0 10 0 ), ( 7 0 3 ),

( 0 14/3 16/3 )}) and P 2 = Conv({( 0 0 ), ( 10 0 ), ( 0 10 ), ( 6 10 ), ( 8 6 )}).
Write the complete MLP. Solve it and convert its solution into a solution

of the original LP.

E2.7. Use the DW reformulation (by keeping the first constraint in the master)

and the CGA to solve the original LP in the previous exercise.
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E2.8. Consider the following LP:

min z = −9x1 + 2x2 + 6x3 + 7x4 − 9x5 + 2x6

s.t. 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6 = 50

6x2 + x3 + 6x6 ≤ 20

4x1 + 5x2 = 12

x3 − x4 ≥ 4

4x5 + 5x6 = 12

x ≥ 0.

By performing a DW reformulation keeping only the first two constraints in

the master, the subproblem decomposes into three subproblems. The first

and the third subproblems are identical and can be defined by polyhedron

P 1 = Conv({( 3 0 ), ( 0 5/12 )}); while the second subproblem corresponds

to P 2 = Conv({( 4 0 )}) + Cone({( 1 0 ), ( 1/2 1/2 )}). Write the complete

ML and solve it. Convert its optimal solution into an optimal solution of

the original LP.

E2.9. Use the DW reformulation (by keeping the first two constraints in the

master) and the CGA to solve the original LP in the previous exercise.

E2.10. Consider the following LP:

max z = 4x2 + 5x3 + x4 + 4x5 − x6

s.t. x1 + 2x2 − x4 + 3x5 + x6 = 32

3x1 + 2x3 + 2x4 + 3x5 − x6 ≥ 13

6x1 + 8x2 + 9x3 ≤ 24

10x4 − 7x5 ≤ 5

− x4 + 2x5 ≤ 6

x ≥ 0.

By performing a DW reformulation keeping only the first two constraints

in the master, the subproblem decomposes into two subproblems, defined

by polyhedra P 1 = Conv({( 0 0 0 ), ( 4 0 0 ), ( 0 3 0 ), ( 0 0 8/3 )}) and

P 2 = Conv({( 0 0 ), ( 0 3 ), ( 1/2 0 ), ( 4 5 )}). Note that variable x6 does
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not appear in any subproblem. Therefore, it is an example of an original

variable that should remain in the MLP (see Note 2.7). Write that MLP

and solve it.

E2.11. Use the DW reformulation (by keeping the first two constraints in the

master) and the CGA to solve the original LP in the previous exercise.

E2.12. Consider the LP from Exercise E 2.10, but modified in such a way that

variable x6 has coefficient −1 in the 3rd constraint and coefficient 1/10 in

the 4th constraint. Now, a DW reformulation keeping the first two con-

straints in the master would lead to a single subproblem, which is not

desirable. Apply the trick described in Note 2.9, creating a copy of x6 to

obtain an original LP decomposable into two subproblems and solve that

resulting LP using the CGA. Then, solve the same decomposition into two

subproblems using the CGA over an Explicit Master LP of format (2.38).

E2.13. Use the CGA to solve the LP from Exercises E 2.4 and E2.5 again, but

this time without using artificial variables. Use Farkas’ pricing (Note 2.5)

until a first feasible RMLP is obtained.

E2.14. Consider the following LP:

min z = 4x + 2y1 + 5y2 + 8y3 + 6y4

s.t. 2x − y1 + 2y2 ≥ 7

−x + y1 + y2 = 7

x + 2y3 + y4 ≥ 9

2x + y4 = 10

(x,y) ≥ 0.

Use the CGA to solve the MLP obtained by a DW reformulation of its

dual LP that keeps the dual constraint corresponding to the variable x

in the master (so, the subproblem decomposes into two subproblems), as

shown in Note 2.10. Interpret that CG as a method that solves a Benders
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decomposition of the primal LP, showing the generated feasibility/optimal-

ity cuts.

E2.15. Consider the following two-stage stochastic problem. A factory manu-

factures products A and B. Each unit of A requires 3 units of resource R1

and 2 units of resource R2. Each unit of B requires 1 unit of R1 and 2 units

of R2. The factory is planning for the next year, for which six parameters

are uncertain: the cost of each resource, and both the selling price and de-

mand for each product. However, it is possible to buy resources now, when

R1 costs $2/unit and R2 costs $4/unit. The first-stage decision variables

xR1 and xR2 indicate how many units are bought now. There are U = 4

equally probable next-year scenarios. For each scenario u ∈ [U ], the second-

stage decision variables yuR1, y
u
R2, y

u
A, and yuB indicate how many units of

each resource would be bought and how many units of each product would

be manufactured. Write the problem of maximizing the expected profit as

an LP in format (2.45), taking the uncertain parameters from the following

table:

Cost ($) Price ($) Demand
Scen. R1 R2 A B A B
1 3 5 21 15 50 64
2 5 6 10 12 30 50
3 4 5 22 26 75 45
4 7 6 25 15 55 80

Solve that LP using Benders decomposition.

E2.16. Generalize Theorem 2.6 for the unbounded subproblem case. In other

words, prove that at any iteration of the CGA for solving (2.22), if the

subproblem solution value is bounded then zRM + c∗ is a lower bound on

its optimal cost zM.
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E2.17. Generalize Theorem 2.8 for the case where the polyhedra defining the

subproblems may be unbounded.

E2.18. Open exercise. Suppose that an original LP is solved by the standard

RSA. In each of its intermediate iterations, is it possible to obtain a lower

bound on the optimal solution value akin to those obtained when the re-

formulated LP is solved by the CGA? In which situations? In other words,

discuss particular cases when it is possible to use the minimum reduced

cost value in formulas for obtaining valid lower bounds.

E2.19. Generalize Theorem 2.12 for the case where the DW reformulation leads

to multiple subproblems and groups of identical subproblems are aggre-

gated. In order words, prove that an optimal dual solution to original LP

(2.11) can be directly obtained from the solution of MLP (2.15) by the

CGA.

E2.20. Apply the generalization of Exercise E 2.19 to obtain the dual solution

of the original LP in Exercises E 2.7, E 2.9 and E 2.11.

E2.21. Solve using the CGA by decomposition into flows the MNFP instance

depicted in Figure 2.7, with the following costs:

arc cost (cka) vertex demand (dki )
AB AC BC BD CD DA A B C D

k
1 2 6 4 -1 3 -3 -2 0 -2 4
2 -3 4 5 1 5 2 -3 0 1 2

E2.22. Solve the MNFP from the previous exercise by a GCA using decompo-

sition into paths and cycles.
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Figure 2.7: Multi-Commodity Flow Problem

E2.23. Project Exercise. Implement (perhaps using an existing framework) a

CGA for solving multi-commodity network flows. Compare the variants in

which the columns correspond to (1) complete bounded flows; (2) paths +

cycles. Compare with solving the original LP (2.24) using simplex and inte-

rior point methods. Include tests on big instances, in particular, instances

where K is very large.
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Chapter 3

Integer Programming Review

This chapter is not intended to work as a first exposition to integer programming.

Very good introductory books include the classic Wolsey [1998] and its recently

updated second edition [Wolsey, 2020], and also Chen et al. [2010] and Conforti

et al. [2014]. More advanced books include Schrijver [1986] and Nemhauser and

Wolsey [1988].

Integer programming is much more difficult than linear programming since it is

anNP-hard problem. Nevertheless, after more than 60 years of algorithmic progress,

formulating other NP-hard problems as integer programs often provides the best

known way of solving them to optimality. Branch-and-bound and branch-and-cut

are the most standard algorithms in integer programming.

3.1. MIPs and the Branch-and-Bound

Algorithm
An Integer Program (IP) is an LP plus the additional constraint that all its variables

should be integer. A general IP can be represented as:

zIP = min cx (3.1a)

s.t. x ∈ P (3.1b)

x ∈ Zn, (3.1c)

where P is a polyhedron defined by a set of linear constraints. The discrete set

formed by the solutions of an IP can be denoted as Int(P ) = P ∩ Zn. When it is

also possible to have continuous variables, we have a Mixed-Integer Program (MIP):
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zIP = min cx+ hy (3.2a)

s.t. (x,y) ∈ P (3.2b)

x ∈ Zn, (3.2c)

where y ∈ Rp is the vector of variables not required to be integer. Since an IP can

be viewed as the particular case of a MIP with p = 0, when we talk about MIPs

(like in “MIP solver”), we may be also referring to IPs.

Definition 3.1: Linear relaxation. Given a MIP (3.2), its linear relaxation is

the LP obtained by removing the integrality contraints (3.2c). Its optimal solution

value is referred to as zLP.

The Branch-and-Bound Algorithm (BBA), proposed by Land and Doig [1960],

solves a MIP as a sequence of LPs. The first LP to be solved is its linear relax-

ation, which is assumed to be not unbounded (the case where the linear relaxation

is unbounded is quite technical and has little practical interest; anyway, in such

case, the MIP may be unbounded, infeasible or have optimal solutions). Branching

is performed when an optimal LP solution is not integer. In such a case, the polyhe-

dron defining its solution space is divided into smaller, disjoint polyhedra (each such

polyhedra defines a subproblem) that together contain all of its integer solutions.

However, bounding occurs when the LP optimization result proves that its polyhe-

dron does not contain improving solutions. The following property will hold during

the algorithm: any improving MIP solution belongs to some active subproblem. Of

course, all MIP solutions (if they exist) should be contained in the original problem

defined by P .

The BBA pseudo-code is presented in Algorithm 1. Variables BestSol and UB

keep the best MIP solution already found and its cost, respectively, while L is the list

of active subproblems, each subproblem being defined by a set of linear constraints.

List L is initialized with P and, on each iteration, a subproblem S is removed from

L to be explored (while S is being explored it is still considered to be active). This

means that the LP zS = min cx + hy subject to (x,y) ∈ S is solved and exactly

one of the following cases arise:

1. If zS ≥ UB, it is proven that S can not contain a MIP solution with a value
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better than UB (if zIP is known to be integer, like in the case of a pure IP

with c integer, this is true if ⌈zS⌉ ≥ UB). In this case, S is said to be pruned

by bound. As an empty S yields zS = ∞, infeasible subproblems are always

pruned by bound.

2. If S is not pruned, one should look at its optimal solution (x∗,y∗). If x∗ is

integer, BestSol and UB are updated. Since it is not possible that further

improving MIP solutions still exist in S, that subproblem is pruned by inte-

grality.

3. Otherwise, S may still contain improving MIP solutions. In order to continue

searching for such solutions, we perform a branching. This means that an in-

teger variable xj such that x∗j is fractional should be chosen. The subproblems

S∩(xj ≤ ⌊x∗j⌋) and S∩(xj ≥ ⌈x∗j⌉), the children of S, are inserted into L. Note

that there are no MIP solutions where ⌊x∗j⌋ < xj < ⌈x∗j⌉, so L is guaranteed

to still have active subproblems containing all improving MIP solutions.

The algorithm ends when L is empty, meaning that, if Int(P ) ̸= ∅, BestSol

contains an optimal solution to the problem and zIP = UB. The procedure in

Line 11 possibly improves BBA efficiency by removing from L some children of

subproblems that would have been pruned if the new UB was available when they

were processed, avoiding solving unnecessary LPs. In other words, if L contains

an unprocessed subproblem S′ such that its parent subproblem S has zS ≥ UB

(⌈zS⌉ ≥ UB, if zIP is known to be integer), then S′ can be immediately removed

from L and be considered as pruned by bound. The presented BBA has two degrees

of freedom, corresponding to the choice of the next active subproblem to be explored

and the choice of the branching variable.

An execution of the BBA can be depicted as a rooted tree, where nodes represent

subproblems and edges represent branchings. The root node corresponds to the
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Algorithm 1 Branch-and-bound algorithm for solving MIP (3.2)

1: UB ←∞
2: BestSol← NULL
3: L← {P}
4: while L ̸= ∅ do
5: Remove a subproblem S from L
6: Solve zS = min cx+ hy subject to (x,y) ∈ S ▷ If infeasible, zS =∞
7: if zS < UB then ▷ If zIP integer, ⌈zS⌉ < UB
8: if x∗ is integer then
9: UB ← zS

10: BestSol← (x∗,y∗)
11: Remove from L subproblems now prunable with UB
12: else
13: Choose a variable xj such that x∗j is fractional
14: Insert subproblems S ∩ (xj ≥ ⌈x∗j⌉) and S ∩ (xj ≤ ⌊x∗j⌋) into L
15: end if
16: end if
17: end while
18: return (BestSol, UB)

linear relaxation. For example, consider the following MIP:

zIP = min −x2 + 8y1

s.t. x1 + 2x2 ≥ 1

x1 + 2x2 ≤ 2

x1 − x2 + 3y1 ≥ 0

x1 − x2 − 3y1 ≤ −1
y1 ≥ 0

x ∈ Z2
+.

A BBA tree solving that MIP is depicted in Figure 3.1. The choice of the next

active subproblem to be explored used the depth-first strategy (remove from L the

last inserted subproblem) and the choice of the branching variable used the most

fractional rule (choose a fractional variable xj such that x∗j − ⌊x∗j⌋ is closer to 0.5).

Subproblem S1 = P corresponds to the linear relaxation, S2 = S1 ∩ (x1 ≤ 0),

S3 = S2 ∩ (x2 ≤ 0), and so on. The optimal solution with z = 5/3 is found in S4,

the fourth subproblem to be explored. So, S5 with z = 3.5 is pruned by bound. A
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BBA tree also indicates parent/child relations between its nodes. So, we may say

that S2 and S5 are the children of S1 or that S2 is the parent of S4.

S1 : x1 = 1/3, x2 = 5/6,

y1 = 1/6, z = 0.5

S2 : x1 = 0, x2 = 1/2,

y1 = 1/6, z = 0.83

S3 : z = ∞
Infeasible

Pruned by bound

S4 : x1 = 0, x2 = 1,

y1 = 1/3, z = 1.67

Pruned by integrality

S5 : x1 = 1, x2 = 1/2,

y1 = 1/2, z = 3.5

Pruned by bound

x1 ≤ 0 x1 ≥ 1

x2 ≤ 0 x2 ≥ 1

Figure 3.1: Example of a BBA tree

The practical performance of the BBA may vary widely, depending on the par-

ticular MIP being solved. In the best case, if the linear relaxation is infeasible or

finds an optimal solution that is also a feasible MIP solution, the BBA only solves

the root node. However, it is quite possible that a very large number of nodes have

to be explored. There are several factors affecting the BBA practical performance.

A key factor is the integrality gap.

Definition 3.2: Integrality gap of a MIP. Given a MIP with optimal solution

value zIP and its linear relaxation with optimal solution value zLP, the absolute

integrality gap is zIP − zLP, while the relative integrality gap (in this book often

simply referred as the gap and expressed as a percentage) is (zIP − zLP)/zIP.

Grosso modo, for MIPs with the same number of integer variables, the expected

number of nodes in the BBA tree grows exponentially with the gap.

There is a second definition for gap that also appears in the literature. We also

state it formally in order to avoid confusion.

Definition 3.3: Optimality gap of a solution. Suppose that the best known

solution to a MIP has value UB and that the best known lower bound on zIP is

LB. The absolute optimality gap and the relative optimality gap of that solution are
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UB − LB and (UB − LB)/LB, respectively.

For example, MIP solvers often provide optimality gaps during a BBA execution,

calculated from the best integer solution found so far and from the current global

lower bound on zIP provided by the minimum zS over the subproblems S that are

parents of active subproblems. In general, optimality gaps work as guarantees of the

quality of an integer solution and depend on the lower bounding mechanism used.

In contrast, the integrality gap is an intrinsic feature of a MIP.

3.2. Formulating Combinatorial

Optimization Problems as MIPs
An optimization problem can be formally defined in three parts: (1) Instance: the

data required for fully specifying a particular case of the problem; (2) Solutions: the

specification of what is a valid solution of an instance; and (3) Goal : the objective

function to be minimized/maximized. When the set of solutions is discrete, we have

a Combinatorial Optimization Problem (COP). In this book, we focus on a more

restricted category of COPs:

Definition 3.4: Linear Combinatorial Optimization Problem. Let a prob-

lem instance contain a base set N with elements numbered from 1 to n and a 1×n

vector c, where cj denotes the cost of the j-th element in N . Assume that a solution

to the problem may be represented by a vector x ∈ Zn
+, where xj is the number of

times that the j-th element appears in the solution (vectors c and x may also be in-

dexed directly by the elements of N , i.e., ce = cj and xe = xj if e is the j-th element

of N). The set of solutions for a given instance, denoted by X, is defined implicitly

by a property that must be satisfied for each of its elements. Often, the elements

of X are defined as the incidence vectors χ(N ′) ∈ Bn of certain sets N ′ ⊆ N . It

is assumed that X is finite. Then, a Linear Combinatorial Optimization Problem

(LCOP) is equivalent to:

min z = cx (3.3a)

s.t. x ∈ X. (3.3b)
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At first sight, the above definition may seem too restrictive. Actually, the major-

ity of the classic NP-hard combinatorial optimization problems (like the hundreds

of problems listed in the appendix of Garey and Johnson [1979]) can be cast as

LCOPs in a more or less straightforward way. We provide such an example.

Definition 3.5: Vertex Cover Problem. Instance: undirected graphG = (V,E),

weights wi, i ∈ V . Solutions: the vertex covers of G, i.e., the sets V ′ ⊆ V such that

for every edge e = {u, v} ∈ E, e ∩ V ′ ̸= ∅. Goal: Minimize
∑

i∈V ′ wi.

The Vertex Cover Problem is an LCOP: by considering N = V , c = w, and

X = {χ(V ′) : V ′ is a vertex cover of G}, it fits in Definition 3.4.

We can formulate and solve many LCOPs, even if they are NP-hard, as MIPs.

In fact, this is often the best known way of solving (in the sense of finding a proven

optimal solution) an NP-hard problem.

Definition 3.6: Formulation of a Set. The IP min cx subject to x ∈ P, x ∈ Zn

is a formulation for a set X ∈ Zn if: (i) it is infeasible if and only if X = ∅, (ii)
otherwise, any optimal solution for it is also an optimal solution for (3.3).

A polyhedron P such that X = Int(P ) = P ∩Zn always provides a formulation

for X. However, Definition 3.6 also permits formulations where Int(P ) \ X is not

empty but the structure of the possible vectors c (for example, if the LCOP definition

assumes that c > 0) makes sure that solutions not in X are never optimal for the

IP. Finding a formulation for an individual set X is usually not interesting.

Definition 3.7: LCOP Formulation. Formulating an LCOP means finding a

description of a family of IPs formulating the sets X corresponding to each instance

of the LCOP.

For example, a Vertex Cover Problem formulation is:

min
∑
i∈V

wi xi (3.4a)

s.t. xu + xv ≥ 1 {u, v} ∈ E (3.4b)

x ∈ Z|V |
+ , (3.4c)

where G = (V,E) and w are given by the vertex cover instance.

77



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Formulations over the variables used in the definition of the LCOP, are referred

to as natural formulations. However, it is also possible to formulate an LCOP using

additional auxiliary variables (see Note 3.17).

Definition 3.8: Extended Formulation. The MIP min cx s.t. (x,y,w) ∈ P, x ∈
Zn, y ∈ Rp, w ∈ Zq is an extended formulation for a set X ∈ Zn if: (i) it is infea-

sible if and only if X = ∅, (ii) otherwise, any optimal solution for it yields (after

dropping its y and w parts) an optimal solution for (3.3). An extended formulation

for an LCOP is a family of MIPs providing extended formulations for the sets X

corresponding to its instances.

There may be an infinite number of formulations (natural or extended) for the

same LCOP. Any formulation leads to MIPs that, in principle, solve the LCOP. How-

ever, the practical performance of the branch-and-bound based algorithms varies a

lot depending on which formulation is used. The differences in performance can be

really dramatic. There are many cases where a “bad formulation” leads to a MIP

that would require centuries of CPU time to be solved (which means that, for all

practical purposes, it fails to solve the instance) and a “good formulation” leads to

a MIP that solves the same instance in seconds. The following concept captures a

key aspect that makes formulations better or worse and provides a theoretical way

of comparing alternative formulations.

Definition 3.9: Relative formulation strength. Let IP1 ≡ min cx subject to

x ∈ P1, x ∈ Zn and IP2 ≡ min cx subject to x ∈ P2, x ∈ Zn be formulations for a

set X ∈ Zn. We say that IP1 is equally strong as IP2 if P1 = P2 and IP1 is strictly

stronger (or only stronger, for short) than IP2 if P1 ⊂ P2.

Stronger formulations lead to smaller gaps.

Theorem 3.1: Let zLP1 and zLP2 be optimal values of the linear relaxation of

formulations IP1 and IP2, respectively. If IP1 is stronger than IP2 then zLP1 ≥ zLP2

for all cost vectors c and zLP1 > zLP2 for some cost vectors c.

Some comments about formulation strength:

• The order provided by Definition 3.9 is only partial, in the sense that it is

possible to have two not equally strong formulations IP1 and IP2 such that
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one is not stronger than the other. However, in that case one has just found a

new formulation IP3 ≡ min cx subject to x ∈ P1∩P2, x ∈ Zn that is stronger

than both IP1 and IP2.

• Definition 3.9 can be generalized to include extended formulations using the

concept of projection. Formulation MIP1 ≡ min cx subject to (x,y,w) ∈
P1, x ∈ Zn, y ∈ Rp, w ∈ Zq is stronger than formulation IP2 ≡ min cx

subject to x ∈ P2, x ∈ Zn if Projx(P1) ≡ {x ∈ Rn : ∃ (y,w) ∈ Rp+q such

that (x,y,w) ∈ P1} ⊂ P2. It is possible to compare extended formulations

defined in different spaces by comparing their projections onto x. See Note

3.16 for more details.

• The strongest possible formulation for a setX, a perfect one, has P = Conv(X).

In fact, that perfect formulation always has gap zero and makes the BBA finish

at the root node (at least if the linear relaxation is solved by a simplex-based

method, guaranteed to find an extreme optimal solution, even if alternative

non-extreme optimal solutions exist). An extended formulation that projects

onto Conv(X) is also said to be a perfect formulation. There are good theo-

retical reasons for believing that we will never have a polynomially-solvable

perfect formulation for an NP-hard problem (Note 3.14).

Given alternative formulations for the same LCOP, the number of nodes in the

corresponding branch-and-bound search trees is likely to depend exponentially on

the formulation gaps. This means that it can be worth going to great lengths to

strengthen a formulation and reduce those gaps. Yet, the formulation size, especially

in the case of extended formulations, is also very important for the overall BBA

performance because it directly impacts the time for solving each LP.

3.3. Cutting Planes and the

Branch-and-Cut Algorithm
A standard way of strengthening a formulation is by adding cutting planes.

Definition 3.10: Valid inequality, cutting plane. A linear inequality αx ≥
α0, α ∈ R1×n, α0 ∈ R, is valid for a set X ⊂ Rn if it is satisfied for all points x ∈ X.
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Let x∗ be an optimal fractional solution of the linear relaxation of a formulation

for a set X ⊂ Zn. A cutting plane is a valid inequality for X such that αx∗ < α0.

In that case, we may also say that that αx ≥ α0 cuts x∗. It is clear that adding

αx ≥ α0 to the formulation makes it stronger.

Valid inequalities are not equally good to be used as cutting planes. The deeper

the cut, i.e., the closer to Conv(X), the better. The best possible cuts are those

that define facets of Conv(X).

Definition 3.11: Face, proper face, facet, facet-defining inequality. Let P

be a polyhedron. Polyhedron F ⊆ P is face of P if there is an inequality αx ≥ α0

valid for P such that F = P ∩ (αx = α0). In that case, we may also say that

αx ≥ α0 defines the face F . A face F is proper if F ̸= ∅ and F ̸= P . A proper face

F is a facet if it is maximal, i.e., there is no other proper face F ′ such that F ⊂ F ′.

An inequality that defines a facet is said to be facet-defining.

Figure 3.2 depicts a formulation for X = {(0, 1), (1, 1), (2, 1), (1, 2)}. The points

corresponding to its linear relaxation are shown in light orange, while those in

Conv(X) are in dark orange. The optimal fractional solution x∗ can be cut by either

of the two cutting planes depicted as dashed lines. The dashed lines correspond to

the sets of format αx = α0 given by the points that satisfy the cutting planes

as equalities. The red line only intersects Conv(X) at (1, 2), so the corresponding

valid inequality is a proper face, not facet-defining. However, the green line intersects

Conv(X) at the segment joining points (0, 1) and (1, 2), so the corresponding valid

inequality (which could be −x1+x2 ≥ −1 or any of its positive scalar multiples, like

−2x1 +2x2 ≥ −2) defines the facet Conv({(0, 1), (1, 2)}), and therefore, is likely to

be a better cutting plane. See Note 3.13 for an additional discussion on facets and

their representations.

The Branch-and-Cut Algorithm (BCA) is an enhancement of the BBA where

formulations can be dynamically strengthened by adding cutting planes. The BCA

pseudo-code is presented in Algorithm 2. It differs from the BBA in lines 13-17.

If x∗ is fractional, a separation procedure is called to search for a cutting plane. If

found, it is added to the current S and the algorithm loops back to line 6. If no

cutting plane is found, branching is performed. Lines 13 and 15 indicate that, if the

MIP contains variables that are not required to be integer, we may use more general

mixed-integer inequalities of format αx+βy ≥ α0 for cutting a point (x∗,y∗) with
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x∗

x1

x2

Figure 3.2: Examples of cutting planes

fractional x∗. Such inequality is valid if it is satisfied for all points in (x,y) ∈ P

such that x ∈ Zn. Some remarks about the BCA:

• When compared to the BBA, the BCA may spend a lot more time in each

node, separating cutting planes and reoptimizing LPs, in the hope of obtaining

a very substantial reduction in the total number of nodes.

• In order to improve node convergence, it is usual to try to separate multiple

cutting planes for the same fractional point, adding several of them at once.

• Sometimes, after some rounds of separation in the same node, it is possible

that the cutting planes start to only cut the fractional solution slightly, leading

to negligible improvements in the z values. This is known as tailing-off. This is

much more frequent when the used cuts are not deep, but it may happen even

with facet-defining cuts. Anyway, if such an undesirable tailing-off situation

is detected, it is better to stop the separation for that node and proceed with

branching.

The BCAs implemented in general-purpose MIP solvers include sophisticated

separation procedures that rely on quite general techniques for finding cutting planes

directly from the MIP coefficients (Note 3.3). The cutting planes thus obtained are

seldom facet-defining. Yet, they may be good enough to obtain major improvements

in performance when compared to pure BBA.
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Algorithm 2 Branch-and-cut algorithm for solving MIP (3.2)

1: UB ←∞
2: BestSol← NULL
3: L← {P}
4: while L ̸= ∅ do
5: Remove a subproblem S from L
6: Solve zS = min cx+ hy subject to (x,y) ∈ S ▷ If infeasible, zS =∞
7: if zS < UB then ▷ If zIP integer, ⌈zS⌉ < UB
8: if x∗ is integer then
9: UB ← zS

10: BestSol← (x∗,y∗)
11: Remove from L subproblems now prunable with UB
12: else
13: Try to separate αx+ βy ≥ α0 cutting (x∗,y∗)
14: if cutting plane found then
15: S ← S ∩ (αx+ βy ≥ α0)
16: goto 6
17: end if
18: Choose a variable xj such that x∗j is fractional
19: Insert S ∩ (xj ≥ ⌊x∗j⌋) and S ∩ (xj ≤ ⌈x∗j⌉) into L
20: end if
21: end if
22: end while
23: return (BestSol, UB)
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When a BCA is being used for solving the formulation of a specific LCOP, it

is possible to do better. One may take its particular combinatorial structure into

account and perform a theoretical investigation of the polyhedra Conv(X) defined

by the sets X that correspond to the LCOP instances. The goal is identifying

families of inequalities that are facet-defining at least in some cases. Some families

of inequalities, usually the simplest ones, can be separated in polynomial time. Other

families lead to separation problems that are also NP-hard. However, even in the

last case, the combinatorial structure of the LCOP may help in devising reasonably

effective and efficient heuristic separation procedures.

For example, consider the vertex cover instance defined by the graph G = (V,E)

depicted in Figure 3.3 and unitary weights. For that instance, Formulation (3.4) is

zIP = min1x subject to x ∈ P, x ∈ Z6, where P = {x1 + x2 ≥ 1, x1 + x4 ≥
1, x1 + x5 ≥ 1, x2 + x3 ≥ 1, x2 + x4 ≥ 1, x2 + x5 ≥ 1, x3 + x6 ≥ 1, x4 + x5 ≥
1, x5 + x6 ≥ 1, 0 ≤ x ≤ 1}. As its linear relaxation yields the fractional solution

with value 0.5 for all variables, with zLP = 3, the BBA would need to branch and

some nodes would have to be explored in order to show that zIP = 4.

1 4

2

5

3

6

Figure 3.3: Example of vertex cover instance, unitary weights

However, suppose that after a theoretical investigation of the vertex cover poly-

hedra one discovers that if C ⊆ V induces a maximal clique (complete subgraph) in

G then the inequality
∑

i∈C xi ≥ |C|−1 is valid and facet-defining. Then, one could

also devise a separation procedure for that family of cuts, taking a fractional solution

x∗ as input and looking for a maximal clique C such that
∑

i∈C x∗i < |C| − 1. How-

ever, as this separation problem is also NP-hard, it is better to propose a heuristic

separation procedure, not guaranteed to find a violated cut if one exists. Anyway,

assume that such separation is embedded in a BCA specialized in solving vertex

cover problems. If in our example that separation heuristic finds x1+x2+x4+x5 ≥ 3
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for cutting the fractional solution of the linear relaxation, then the second LP would

already yield an integer solution with z = 4 and the BCA would finish in the root

node.

3.4. Successes and Limitations of the BCA:

two examples
BCAs are definitely the best known way of solving general MIPs. We talk here

about BCAs specialized for solving important LCOPs.

3.4.1. The Traveling Salesperson Problem
The classic Traveling Salesperson Problem (TSP) is often mentioned, even by people

not in the optimization community, as the most prototypical NP-hard combinato-

rial optimization problem.

Definition 3.12: Traveling salesperson problem. Instance: undirected graph

G = (V,E) and edge costs ce, e ∈ E. Solutions: the tours of G, i.e., the cycles that

visit each vertex in V exactly once. Goal: minimize the sum of the cost of the edges

in the Hamiltonian cycle.

The TSP can be formulated as:

min
∑
e∈E

cexe (3.5a)

s.t.
∑
e∈δ(i)

xe = 2 i ∈ V (3.5b)

∑
e∈δ(S)

xe ≥ 2 S ⊂ V (3.5c)

x ∈ B|E|. (3.5d)

Binary variable xe, e ∈ E, indicates whether edge e belongs to the tour. Constraints

(3.5b) are known as Degree equalities, while (3.5c) are known as Subtour Elimina-

tion inequalities. Dantzig et al. [1954] used that formulation to solve a TSP instance
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with 49 vertices, an amazing result considering the very limited computers available

at that time.

Starting in the late 1970s, several authors performed an intense investigation

of the TSP polyhedra, corresponding to the convex hull of the integer points in

that formulation. Many families of facet-defining inequalities were found, includ-

ing 2-Matching, Comb, Path, Clique-Tree, Bipartition, Ladder, and Domino-parity

inequalities. Subtour Elimination and 2-Matching Inequalities can be separated in

polynomial time; separation heuristics for the more complex families have been

proposed. All that research effort went along with increasingly impressive practi-

cal results. In 1978, the largest solved instance had 120 vertices. In 2006, all the

TSPLIB instances with up to 85,900 vertices could be solved to optimality (the

largest instance taking 136 years of CPU time!) by a highly sophisticated branch-

and-cut implementation (Note 3.15). More importantly, all the tested 463,000 ran-

dom Euclidean instances ranging from 100 to 2500 vertices could be solved with

default parameters. The 10,000 instances with 1000 vertices took an average time

of 10 minutes, as reported in Applegate et al. [2007]. As expected, since the TSP

is NP-hard, there are some much smaller instances that may take a long time to

be solved, like those constructed by Hougardy and Zhong [2021] and Vercesi et al.

[2023]. However, those instances are not likely to be found in practice.

It is tempting to view the big success on the TSP (and also the significant suc-

cesses on several other problems, like for example, the Independent Set Problem

[Padberg, 1973, Rossi and Smriglio, 2001, Rebennack et al., 2011] or the Max Cut

Problem [Barahona and Mahjoub, 1986, De Simone and Rinaldi, 1994]) of the ap-

proach “natural formulation + polyhedral investigation + separation procedures =

BCA” as an indication that it may work well on every LCOP. Unfortunately, this

does not appear to be true.

3.4.2. The Capacitated Vehicle Routing Problem
The Capacitated Vehicle Routing Problem (CVRP) is the most classic vehicle rout-

ing variant [Dantzig and Ramser, 1959].

Definition 3.13: Capacitated vehicle routing problem. Instance: undirected

graph G = (V,E), where V = {0} ∪ V+, vertex 0 represents a depot and V+ the

set of customers; edge costs ce, e ∈ E; integer positive demands di, i ∈ V+; and
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integer vehicle capacity W . Solutions: sets of routes in G that, together, visit all

customers exactly once. A route is a vertex-elementary cycle (a cycle that does not

repeat vertices) that passes by the depot and such that the sum of the demands of

the customers in it does not exceeds W . Goal: minimize the sum of the cost of the

edges in the routes.

The CVRP has the following natural formulation [Laporte and Nobert, 1983]:

min
∑
e∈E

cexe (3.6a)

s.t.
∑
e∈δ(i)

xe = 2 i ∈ V+ (3.6b)

∑
e∈δ(S)

xe ≥ 2⌈d(S)/W ⌉ S ⊆ V+ (3.6c)

xe ≤ 1 e ∈ E \ δ(0) (3.6d)

x ∈ Z|E|
+ . (3.6e)

Variable xe, e ∈ E, indicates how many times edge e appears in the solution. Note

that edges adjacent to the depot can be used twice, in case of routes visiting a

single customer. Constraints (3.6b) are also known as degree equalities. Constraints

(3.6c), where d(S) =
∑

i∈S di, are Rounded Capacity Cuts (RCCs). The quantity

⌈d(S)/W ⌉ is a lower bound on number of routes that should visit customers in S.

RCCs make sure that routes are connected to the depot and also that they do not

exceed capacity. Exact separation of RCCs is NP-hard, but very good separation

heuristics do exist [Lysgaard, 2003].

The CVRP has many similarities with the TSP (actually, it generalizes it). Given

the enormous practical importance of vehicle routing, in the 1990s and the early

2000s, many researchers tried to emulate what have been done on TSP and create

a very good BCA for the CVRP. So, they investigated the polyhedra defined by the

convex hull of the integer points in that formulation. Several families of valid in-

equalities were found, including Framed Capacity, Strengthened Comb, Multistars,

and Extended Hypotour, as summarized in Naddef and Rinaldi [2002]. Suitable

heuristic separation procedures were devised. However, the obtained results can not

be compared with those obtained in the TSP. By looking at the several BCAs for
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the CVRP proposed in that period [Araque et al., 1994, Augerat et al., 1995, Bla-

sum and Hochstättler, 2000, Ralphs et al., 2003, Achuthan et al., 2003, Wenger,

2003, Ralphs, 2003, Lysgaard et al., 2004] one can observe a “diminishing returns”

effect, where substantial theoretical and implementation efforts achieve results that

are only marginally better than those of previous works. In fact, some CVRPLIB

instances with only 50 customers could not be solved by any of those BCAs.

Why BCAs work so much better on TSP than on CVRP?

• The starting TSP formulation (3.5) is already quite strong, usually obtaining

gaps of less than 0.5% on TSPLIB instances. By also separating 2-matching

inequalities, one can obtain in polynomial time (Note 3.14) a lower bound

that is often less than 0.2% away from the optimal in those typical instances.

This leaves a small gap to be closed by the heuristic separation of complex

inequalities and by branching.

• The starting CVRP formulation (3.6) is not so strong, obtaining gaps between

2%–5% on typical CVRPLIB instances (even if exact separation of RCCs

by MIP is used). By adding all known inequalities, using the best available

separation procedures, typical gaps decrease to around 1%–4%. Those gaps

may look small, but (at least for the sake of solving instances to optimality)

they are not, truly leading to very large branch-and-bound trees.

Branch-and-cut algorithms are the best known way of solving gen-

eral MIPs and have found spectacular successes in solving some im-

portant NP-hard combinatorial problems. Yet, quite modest results

obtained in other very important problems show its limitations.

So, other alternatives for obtaining stronger formulations should

be considered. The most important such alternative is perhaps the

use of column generation.
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Notes

3.1. Gomory’s cutting plane algorithm. The first algorithm for solving IPs

[Gomory, 1958] is based on a procedure that is guaranteed to separate a cut-

ting plane (now known as a Gomory Cut) for any optimal fractional solution

of a linear relaxation. He proved that, by iterating that procedure, an inte-

ger solution would be obtained with a finite number of cuts. That algorithm

was generalized for MIPs in Gomory [1960]. Unfortunately, Gomory’s cutting

plane algorithm does not work well in practice. As the cuts are not likely to

be deep, convergence is slow and the size of the LPs grows a lot. Moreover,

the method is prone to severe numerical issues.

3.2. Late recognition for Land and Doig. The BBA was proposed in Land and

Doig [1960] (the name branch-and-bound was coined in Little et al. [1963]; the

variant shown as Algorithm 1, where the tree is necessarily binary, appears

in Dakin [1965]). It proved to be much better in practice than Gomory’s

cutting plane algorithm and was adopted in the mid-1960s as the algorithm for

solving MIPs, a situation that lasted until the 1990s [Bixby, 2012]. Even today,

the BBA is still at the core of all widely used approaches for solving MIPs.

More advanced algorithms, like BCA, Branch-and-Price Algorithm (BPA), or

Branch-Cut-and-Price Algorithm (BCPA) — the last two algorithms will be

defined in Chapter 4 — are built on top of the basic BBA. Finally, there are

also many BBAs for particular COPs that do not use LPs, the bounds used for

pruning nodes being obtained by combinatorial procedures or by Lagrangian

Relaxation (Chapter 5).

The delay in conferring major awards and honors for Ailsa Land and Alison

Harcourt (née Doig), the creators of such an impactful and seminal algorithm,

is conspicuous. In fact, before 2018 (when the movement for better recognizing

the contributions of women to science got momentum) the only such honors

were that the Canadian OR Society awarded Land with the Harold Larnder

prize in 1994 and that Land and Doig [1960] was chosen as one of the ten classic

papers in integer programming to be reprinted in Jünger et al. [2010]. Land

was posthumously awarded the EURO Gold Medal, the highest distinction
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within OR in Europe, in 2021. In contrast, most other pioneers mentioned in

this book received honors not so long after their seminal contributions.

Besides gender and even geographical issues (Harcourt made her career in

Australia), we speculate about another additional possible explanation for

that relative lack of recognition: the BBA was too simple and too obviously

exponential to be viewed in the 1960s as a great piece of mathematics! In

fact, many researchers of that time were looking for a “mathematically deep”

and efficient algorithm for integer programming, something comparable to

the simplex algorithm for linear programming. The hopes of finding such a

holy grail algorithm would only subside in the mid-1970s, when the NP-
completeness theory was established.

3.3. Modern MIP Solvers. Branch-and-Cut is now the dominating approach

for solving general MIPs. Actually, the modern MIP solvers are highly com-

plex and sophisticated codes that incorporate many advanced elements, for

example:

• Preprocessing – There are techniques for strengthening the coefficients

of the constraints in a MIP. By probing and propagating logical implica-

tions it may be possible to fix some variables. Preprocessing may also be

performed in nodes down the tree: as branching constraints and fixing

by reduced costs restrict the subproblems, it may be worth preprocessing

them again. In fact, as mentioned in Note 3.6, fixing by reduced costs

and logical implications can be combined to provide powerful reduction

tests. Many specific preprocessing techniques are described in Achterberg

et al. [2020].

• Primal heuristics – Finding good feasible solutions as early as possible

is crucial to BCA performance, allowing effective pruning by bound and

also effective fixing by reduced costs. MIP solvers apply many heuristic

techniques for finding improving integer solutions, from simply rounding

of the current fractional solution to complex local search based methods.

• Cut generation – Many families of cutting planes that were proposed in

the literature have been incorporated into the MIP solvers. The families

range from improved versions of the original Gomory’s Mixed-Integer
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Cuts to families of cuts that are derived from combinatorial structures

that are automatically detected in the MIP constraints. For example, it

is possible to build a conflict graph having two vertices for each binary

variable, one corresponding to the variable itself and one for its com-

plement, and edges between pairs of vertices that can be proven to be

incompatible (can not have both value one). Then, well-known cuts for

the Independent Set Problem (ISP), like cliques and odd holes, can be

separated from that graph. Of course, a cut that is facet-defining for a

MIP substructure is not likely to be facet-defining for the complete MIP,

but it may still be very useful.

• Cut selection – The goal is to find a relatively small set of cutting planes

that can significantly reduce the gaps without burdening the LPs too

much. As indicated by Achterberg [2007], the cut selection in MIP solvers

is usually based on efficacy and orthogonality. The efficacy is the Eu-

clidean distance of the cut hyperplane to the current LP solution, and

an orthogonality bound makes sure that the cuts added to the LP form

an almost pairwise orthogonal set of hyperplanes.

• Symmetry handling – The solvers try to identify groups of symmetric

variables and either try to branch on their aggregations or introduce

symmetry-breaking constraints.

• BB tree management – There are sophisticated methods for choosing the

branching variable (Note 3.10) and for choosing the next active subprob-

lem to be explored.

In some cases, those advanced elements can be so effective that they may

“fix”, up to a point, a weak formulation provided by the user. More details

about general MIP solvers can be found in Lodi [2010]. According to Bixby

[2022], the best MIP solvers of today, running in the same hardware, are 4

or 5 orders of magnitude faster than the MIP solvers of 1990 (which were

essentially pure BBAs) on typical benchmark sets. By also considering the

hardware progress, including the widespread availability of multiple cores, we

have 7 to 8 orders of speed-up. Yet, given the exponential complexity of all

BB-based algorithms, the size of the instances that can be solved in a given

amount of time increased a lot, but by a much smaller factor. Koch et al.

[2022] also provides an assessment of the progress in MIP solving, covering
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the period from 2001 to 2020.

The current most advanced commercial MIP solvers, COPT, Cplex, Gurobi,

and Xpress (in alphabetic order), have a superior level of performance when

compared to the best open-source solvers, like COIN-OR Cbc, HiGHs, and

SCIP.

3.4. Constraint Programming and SAT solvers. The main “rivals” of MIP

solvers as an off-the-shelf tool for the exact solution of NP-hard COPs are

Constraint Programming (CP) solvers and SAT solvers.

• A CP model represents a COP as a set of logical constraints over a

vector of discrete variables x. In many cases, since higher-level constructs

are available, such a model can be more intuitive than a MIP model.

For example, the all different constraint type may be used for saying

that a subset of the variables should have distinct values. CP solvers use

advanced techniques such as constraint propagation and backtracking to

explore the solution space [Rossi et al., 2006]. In principle, CP is more

suited for solving decision problems, where the goal is finding a feasible

solution or proving that none exists. However, optimization problems

are also handled via objective function constraints of format c(x) ≤ z

and c(x) ≥ z, where z is an upper bound that is updated as improving

solutions are found and z is a lower bound that is updated when it is

proven that no solutions with a smaller cost exist. CP has proven to

be very effective for highly constrained problems (like those often found

in scheduling, project planning, and timetabling) where the fixing of a

single variable may trigger significant reductions in the search space.

• SAT solvers address the Boolean Satisfiability Problem, which asks whether

there exists a solution that satisfies a given Boolean formula. SAT solving

(which may be seen as a particular case of CP) has seen big advancements

over the years, becoming highly efficient for some problems, especially in

verifying circuit designs and software verification. Advanced techniques

like conflict-driven clause learning played a crucial role in that. A com-

prehensive reference on the topic is Biere et al. [2021].

There is some degree of cross-fertilization and integration between those two
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COP-solving paradigms and MIP solving. For example, the open-source Solv-

ing Constraint Integer Programs [Bolusani et al., 2024] SCIP optimization

suite was created with that integration idea in mind. Another example is

Yunes et al. [2010]. There is even the CPAIOR (International Conference on

the Integration of Constraint Programming, Artificial Intelligence, and Opera-

tions Research) Conference Series dedicated to the topic. Indeed, most modern

MIP solvers borrow several CP techniques, for instance, to better propagate

the effect of fixing variables by branching or by reduced costs.

3.5. Cut callback routines. BCA algorithms for specific LCOPs can be imple-

mented on top of general-purpose MIP solvers. User-written separation pro-

cedures can be defined as cut callback routines. Those routines then will be

called by the MIP solver for each fractional solution found along the BCA;

the cutting planes that may be found are added to the formulation. This

is very convenient because the BCA coder will profit from several advanced

algorithmic elements already implemented in those MIP solvers.

We remark that, at the time of writing, general-purpose MIP solvers do not

offer an equivalently easy way of implementing a Branch-and-Price Algorithm.

3.6. Fixing by reduced costs. The fixing of variables by reduced costs is a simple

technique for improving the performance of BBAs and BCAs.

Theorem 3.2: Let UB be the value of the best known solution for a MIP in

general format (3.2). After solving its linear relaxation, define gap = UB−zLP
(if zIP is known to be integer, like in the case of a pure IP with c integer,

gap = UB − ⌈zLP⌉). Let c̄∗ be the vector with the reduced cost values. Then,

every integer variable xj, j ∈ [n], such that c̄∗j ≥ gap should have value zero

in any improving MIP solution.

Proof. We provide a proof for the particular case of an IP in format zIP =

min cx subject to Ax ≥ b, x ∈ Zn
+ (the proof for the general case is left as an

exercise). The dual of its linear relaxation is maxπb subject to πA ≤ c, π ∈
R1×m
+ . Let π∗ be the optimal dual solution found, with cost π∗b = zLP. By

definition, c̄∗ = c−π∗A. Let xj be a variable with c̄∗j ≥ gap and with positive
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value in some solution x′. This means that x′ should also be a solution for the

modified IP min cx subject to Ax ≥ b, xj ≥ 1, x ∈ Zn
+. The dual of its linear

relaxation is maxπb+α subject to πA+αej ≤ c, π ∈ R1×m
+ , α ∈ R+. Solution

(π, α) = (π∗, c̄∗j ) is feasible for it and costs zLP+ c̄∗j . Therefore, cx
′ ≥ UB and

x′ can not be an improving solution for the original IP.

Variables fixed to zero using the above result can be eliminated, leading to

lighter LPs during the BBA tree search. As mentioned in Exercise E 3.3, it

may also be possible to fix variables to their upper bounds. In fact, the fixing

by reduced costs can be tried in all nodes, after every LP is solved, using the

local lower bounds zS and the current global upper bound UB for computing

gap. Variables fixed at a node are eliminated from all its descendent nodes.

Fixing by reduced cost is effective when the absolute gaps are small, which may

happen already in the root node in the case of strong formulations (and if some

good heuristic UB is available). However, even for not-so-strong formulations,

at some level down the tree, the gaps will be small enough to allow an effective

fixing.

The reasoning in the proof of Theorem 3.2 can be used for deriving more

complex and powerful reduction tests, combining reduced costs with logical

implications. For example, suppose that an analysis of the structure of the

constraints of an IP shows that if a certain variable xi has a positive value then

either xj or xk should have a positive value. Then, if c̄∗i +min{c̄∗j , c̄∗k} ≥ gap,

xi can be fixed to zero. Those tests can be particularly effective for MIPs

modeling some specific LCOPS, as happens in the Steiner Problem in Graphs

(Note 3.17).

3.7. Chvátal-Gomory cuts. The Chvátal-Gomory procedure [Chvátal, 1973] for

deriving valid cuts is the following. Consider a set X = {x ∈ Zn
+ : Ax ≤ b},

where A has dimension m × n. Let ρ ∈ R1×m
+ be a vector of non-negative

multipliers. Then, inequality ρAx ≤ ρb is also valid for X. As x ≥ 0, by

rounding down every component of ρA, we get the weakened valid inequal-

ity ⌊ρA⌋x ≤ ρb. By noticing that its LHS is integer for any x ∈ X, it is

also possible to round down the RHS, producing the stronger valid inequality

⌊ρA⌋x ≤ ⌊ρb⌋. The separation procedure proposed in [Gomory, 1958] can be
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viewed as a particular case of the Chvátal-Gomory procedure (which explains

its name).

Chvátal proved that any valid inequality for X, including those defining the

facets of Conv(X), can be derived by the recursive application of that proce-

dure. In fact, he defined a hierarchy of valid inequalities. The original inequal-

ities in Ax ≤ b have rank 0. The inequalities that need one application of the

Chvátal-Gomory rounding procedure over Ax ≤ b to be obtained have rank

1. Then, rank 2 inequalities are those obtainable by the rounding procedure

over inequalities with rank ≤ 1, and so on. The exact separation of rank 1

cuts (finding multipliers that lead to a violated cut, if such multipliers do ex-

ist) is already NP-hard [Eisenbrand, 1999]. However, “offline” computation

experiments with rank 1 cut exact separation by MIP (too slow to be used

in practice during an actual BCA run) indicated that those cuts have a large

potential for significantly reducing gaps [Fischetti and Lodi, 2007].

3.8. Objective value cuts. Suppose an IP in format (3.1) and such that zIP is

known to be integer. If a fractional solution x∗ leads to a fractional z∗ = cx∗

it is very tempting to add the objective value cut cx ≥ ⌈z∗⌉. Many people

have actually tried to do that. As the computational results are seldom good,

those negative experiences are not published and instead become part of the

unwritten knowledge or “community folklore”.

But why does adding objective value cuts usually turn out to be ineffective,

or even harmful? The first effect of such a cut within a BCA is to increase

the node value to ⌈z∗⌉. Unhappily, this is not really useful, as that node

lower bound was already known and utilized both for pruning and fixing by

reduced costs. On the other hand, the side effect of an objective value cut

is creating nodes with many alternative optimal fractional solutions. The z

value in those nodes and in their children will only move if all solutions with

value ⌈z∗⌉ are removed either by cutting or by branching. The problem is that

some important decisions within the BCA are based on objective function

improvement, like for example, the choice of the branching variable using

strong branching (Note 3.10). This means that parts of the algorithm will

become blind while the z values are stuck to ⌈z∗⌉. Moreover, an objective

value cut leads to an extremely degenerate dual solution: the dual variable
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of the cut has value 1 and the remaining dual variables have value zero (so,

all variables have reduced cost zero). While this happens, dual variables and

reduced costs also can not be used for guiding decisions.

3.9. Set Covering, Set Partitioning, and Set Packing. There are three sub-

families of IPs that deserve particular consideration. In all those subfamilies

the coefficient matrix A belongs to Bm×n. A Set Covering Problem (SCP) has

the format min cx subject to Ax ≥ 1, x ∈ Zn
+. A Set Partitioning Problem

(SPP) has format min cx subject to Ax = 1, x ∈ Zn
+. Finally, a Set Pack-

ing Problem (SPcP) has format max cx subject to Ax ≤ 1, x ∈ Zn
+. In a

small abuse of nomenclature, IPs where most constraints fit into one of those

formats are often still referred to as SCPs, SPPs, or SPcPs.

As will be seen in Chapter 4, there are many situations when a Dantzig-Wolfe

reformulation of an IP produces either an SCP, an SPP, or an SPcP, but with

a very large number of variables, requiring the use of Column Generation

techniques. However, the interest in those three families of IPs started in the

early 1960s, when it was realized that they could be very useful for modeling

some complex situations and still keeping that complexity “hidden”. Consider

for example the following problem.

Definition 3.14: Airline Crew Scheduling Problem. Instance: Set A

of airports and set of F flights that will occur during a planning period of T

consecutive days. A flight f ∈ F is characterized by its origin airport oaf ∈
A (say, New York JFK), origin time of departure otf (like, 3/12/2023 at

11:35 AM), final destination airport daf ∈ A (say, Miami MIA), and final

destination time of arrival dtf (like, 3/12/2023 at 4:15 PM). Flights may

have intermediate stops, but this is not explicitly shown in the instance data.

Assume that an unlimited number of crews are available, all of them based

at the same airport b ∈ A (more complex variants consider multiple bases

and limits on the number of available crews), and that any crew can work on

any flight. The same crew that worked on flight f1 can also work on flight f2,

provided that daf1 = oaf2 and dtf1 +∆f1 ≤ otf2 , where ∆f1 is the minimum

rest time after flight f1. Sets R and C of work rules and cost rules, respectively,

are also given. Solutions: sets of rosters that, together, include each flight in
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F exactly once. A roster is a sequence of flights that start and end at the

base airport and can be done by the same crew, respecting the work rules

R. The work rules may include complex safety regulations, union agreements,

and company policies. Days without flights in a roster, if they are spent at

the base airport, are interpreted as rest days. Goal: minimize the sum of the

costs of the rosters. Those costs are calculated using potentially complex cost

rules C.

The Airline Crew Scheduling Problem was one of the first industry problems

to be routinely solved using IP formulations (as surveyed in Arabeyre et al.

[1969]). The problem can be formulated as an SPP as follows. Let Q be the set

of all possible rosters. Let cq be the cost of roster q ∈ Q and let pqf , f ∈ F , be

a binary constant indicating whether flight f is included in it. The formulation

is:

zIP = min
∑
q∈Q

cqxq (3.7a)

s.t.
∑
q∈Q

pqfxq = 1 f ∈ F (3.7b)

x ∈ Z|Q|
+ . (3.7c)

A noteworthy aspect of the above SPP formulation is that the potentially

intricate rules R are not explicitly expressed within it. Rosters that comply

with all the rules in R are present in the SPP, while those that do not are

simply absent. Similarly, the cost rules C are concealed within the procedure

that calculates the cost of each roster before solving the SPP. To reduce the

size of the formulation, flights may be aggregated into rotations, pre-defined

“good” two-or-three-day sequences of flights starting and ending at the base

airport. In that case, a roster should be a sequence of compatible rotations

and the SPP model would have one row for each rotation. Even with that

aggregation, real-world instances may lead to SPPs with a very large number

of variables. In practice, it is frequent to solve the restricted problems only

containing a subset S ⊂ Q of pre-defined “good” rosters, |S| being limited to

keep the resulting SPP tractable. However, significantly better solutions can

be obtained by also applying Column Generation, even if heuristically (see
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Chapter 6).

3.10. Pseudo-cost branching, strong branching. The choice of the branching

variable is a key decision within a BB-based algorithm. Consider a hypotheti-

cal BBA run where every branching cuts 5% of the gap in both children nodes

(the difference between their z values and their common parent z value cor-

responds to that proportion of the total integrality gap) and where an upper

bound UB with value equal to zIP is already known from the beginning. The

BBA would explore 221 − 1 nodes. Now, suppose a similar situation except

that each branching cuts 10% of the gap. The BBA would only explore 211−1

nodes. While that example is artificial, there are numerous real cases where

an advanced branching strategy can indeed improve upon naive branching by

orders of magnitude, especially on difficult problems where the search trees

may be very large.

Many older BB-based algorithms used relatively simple rules for selecting the

branching variable. This is not likely to be really good. Extensive computa-

tional experiments in Achterberg et al. [2005] showed that the popular rule of

branching on the most fractional variable is not better than branching over a

random fractional variable!

The strategy known as pseudo-cost branching was introduced in Bénichou

et al. [1971]. The idea is to keep information from the branchings already

performed in order to guide future choices. For every variable xj that was

already branched, a pseudo-cost is the average observed increase in the ob-

jective function value per unit of change in xj . For example, assume that the

upward pseudo-cost ξ+j = 8 and that the downward pseudo-cost ξ−j = 5. If

in the current node being explored x∗j = 0.7 then the pseudo-cost estimate is

that forcing xj ≥ 1 would increase the z value by 2.4 units, while xj ≤ 0 would

increase the z value by 3.5 units. Pseudo-cost branching works but has limi-

tations. In particular, it performs poorly at the top of the search tree because

there is little or no past branching information. Note that those are exactly

the most critical branching decisions. While a bad choice near the bottom of

the tree only has a local impact, bad choices at the top of the tree may have

a global impact on overall performance.

A potentially better strategy was motivated by the following observations:
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• Consider a computationally expensive experiment where all candidates

(integer variables with a fractional value in the LP solution) of a certain

node are tested and the resulting actual improvements in the z values

are available for ranking and classifying the candidates. Typically, most

candidates would be classified as “poor”, some as “regular”, and only

relatively few as “good”. In fact, it is not so rare that only one or two

candidates would stand out as “excellent”. It would be also observed that

rules or even pseudo-costs are not able to consistently identify the best

candidates. Even the very complex rules implicit in the trained neural

networks obtained by recent Machine Learning approaches have limita-

tions [Bengio et al., 2021, Scavuzzo et al., 2024].

• Consider a hypothetical perfectly balanced BB tree. The level at depth

l (depth 0 corresponds to the root node) has 2l nodes. So, as the size

of the search tree grows, the proportion of the total BBA running time

spent at the top of the tree becomes very small, almost negligible. Actual

BB trees are not balanced, but that general observation is still true.

Strong branching is a computationally expensive procedure that tests many

candidates before choosing one of them. Extensive experiments have shown

that it most often pays, especially on nodes on the top of the tree. This strategy

was originally proposed by Applegate, Bixby, Chvátal, and Cook around 1995

in their Concorde TSP solver (see Note 3.15) and was soon included in general

MIP solvers. As will be fully discussed in Chapter 8, there are several tricks

for making strong branching more efficient. We now mention the following:

• The effort in testing many candidates that are not chosen should not

be wasted. The produced information can be used to significantly im-

prove the pseudo-costs. In fact, the best overall strategy is often to com-

bine strong branching on the top of the tree with the resulting improved

pseudo-cost branching on the bottom [Achterberg et al., 2005].

• The re-optimization of an LP after a branching constraint is introduced

is done using the dual simplex algorithm, hot-started with the parent LP

optimal basis (Note 1.7). When testing one of the children corresponding

to a candidate, if a fixed number of dual simplex iterations obtains a

very small increase in the z value, the algorithm is stopped, and that

unpromising candidate is dropped.
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3.11. Branching over linear expressions. The BBA and the BCA for solv-

ing MIP (3.2) may only perform branching over individual x variables, as

presented in Algorithm 1 and Algorithm 2. However, in some situations, it

may be advantageous to also perform branching over linear expressions. A

linear expression αx, α ∈ R1×n, is suitable for branching if its value should

be integer for any optimal MIP solution. If a fractional solution (x∗,y∗) is

such that the value αx∗ is fractional, then one can branch on the disjunction

αx ≤ ⌊αx∗⌋ or αx ≥ ⌈αx∗⌉. We present two classic examples of branching

over linear expressions.

• Consider the SPP min cx subject to Ax = 1, x ∈ Zn
+, where A ∈ Bm×n.

In many practical situations (like the Airline Crew Scheduling Problem

shown in Note 3.9) n can be fairly large. Consider a branching over a

certain individual variable xj . Fixing xj to one is likely to be effective,

in the sense of moving the z value of the child node significantly. This

happens because all the other variables that conflict with xj will be also

fixed to zero. In fact, a preprocessing step would eliminate all rows i ∈ [m]

such that aij = 1 from the corresponding child node. On the other hand,

fixing xj to zero barely changes the problem and the child node z value

probably will not move significantly. The overall effect would be a very

unbalanced and large search tree.

Ryan and Foster [1981] introduced a better branching scheme for the

SPP. The idea is to select two rows l and k and branch on the expression∑
j∈[m]:alj+akj=2 xj . If that expression is set to 1, then rows l and k should

be covered by the same variable. This is equivalent to eliminating all

variables xj such that alj + akj = 1. If the expression is set to 0, then

rows l and k should be covered by distinct variables, which is equivalent

to eliminating all variables xj such that alj + akj = 2. The Ryan-Foster

Branching (RFB) is proved to be complete: if the solution of the SPP

linear relaxation is fractional then there should be rows l and k such that

the corresponding RF expression has a fractional value.

RFB is sometimes used when the Dantzig-Wolfe reformulation of an IP

produces an SPP. However, its use in a Column Generation context leads

to potential problems, as will be discussed in Chapter 4 and in Chapter

8.
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• Consider the TSP definition and its formulation (3.5). Any route should

contain an even number of edges in δ(S), for any S ⊂ V . So, it is possi-

ble to branch over linear expressions
∑

e∈δ(S) xe/2, as first suggested in

Clochard and Naddef [1993]. This scheme, which is sometimes referred

to as branching on cutsets (in contrast with branching on edges), is com-

plete. This is proven by simply realizing that branching over variable xe,

e = {u, v}, is equivalent to branching over the expression defined by the

set S = {u, v}.
Branching on cutsets can also be effective on VRPs. For example, con-

sider the CVRP formulation (3.6). BCAs over it, like Lysgaard et al.

[2004], may branch on expressions corresponding to sets of customers

S ⊆ V+. Silva et al. [2024] contains an extensive experimental evaluation

of branching schemes for VRPs, including RFB and branching on cutsets.

3.12. Big-M constraints. After a number of formulation tricks are learned (the

classic reference is Williams [1978], now in its 5th edition [Williams, 2013], see

also Chen et al. [2010]), it is not so difficult to cast most LCOPs as MIPs. Yet,

there are some types of formulations that are notoriously weak and should

be avoided if possible. This includes those containing the so-called Big-M

constraints, which are typically used to propagate the implications of a binary

variable to a continuous variable (or to an integer variable that can assume

large values). In those constraints, the binary variable appears multiplied by

a large coefficient, in some cases by a really large coefficient (the Big-M).

The most classic example of a formulation having Big-M constraints is the

Miller-Tucker-Zemlim (MTZ) formulation [Miller et al., 1960] proposed for the
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Asymmetric TSP, defined over a directed graph G = (V,A), where V = [n]:

min
∑
e∈A

caya (3.8a)

s.t.
∑

a∈δ−(i)

ya = 1 i ∈ V (3.8b)

∑
a∈δ+(i)

ya = 1 i ∈ V (3.8c)

w1 = 1 (3.8d)

2 ≤ wi ≤ n i ∈ V, i ̸= 1 (3.8e)

wi−wj + (n− 1)yij ≤ n− 2 (i, j) ∈ A, j ̸= 1 (3.8f)

(y,w) ∈ Z|A|
+ × Zn

+, (3.8g)

where binary variable ya indicates that arc a is used and wi is the position

of vertex i in the route with respect to vertex 1. Big-M constraints (3.8f)

eliminate subtours in the following way. Consider the constraint corresponding

to a certain (i, j) ∈ A, such that j ̸= 1. If yij = 0, the constraint is nullified,

since it only implies that wi−wj ≤ n−2, a redundant inequality. On the other

hand, if yij = 1, the constraint implies that wj ≥ wi + 1, which is its desired

effect. In fact, for any cycle C formed by arcs that do not pass by vertex 1, it

is impossible that ya = 1 for all a ∈ C. MTZ formulation is much weaker than

(3.6). As the binary variables are multiplied by the large coefficient (n− 1) in

Constraints (3.8f), it is quite easy for a fractional solution to “fool” them. For

example, if i, j ̸= 1, fractional solutions containing yij = yji = (n− 2)/(n− 1)

(a near-integer subtour of size 2) may be feasible.

We remark that Big-M formulations, like the MTZ, may work reasonably well,

up to a certain instance size, if the formulation is light, so each node in the BB

tree can be quickly solved. However, sometimes such a formulation only works

well because advanced MIP solvers can improve it a lot, both by preprocessing

and by separating strong cutting planes.

3.13. Multiple representations of the same facet. In the example of Figure

3.2, all inequalities that are positive scalar multiples of −x1 + x2 ≥ −1 de-

fine the facet Conv({(0, 1), (1, 2)}) of Conv(X). However, in general, it may
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be harder to determine if two distinct inequalities define the same facet of

Conv(X) or not. In order to understand that we need some additional con-

cepts.

Definition 3.15: Affine combination, affine independence. Given a

finite set X = {p1, . . . ,pt} of points in an n-dimensional space, x is said

to be an affine combination of the points in X if x =
∑

j∈[t] pjλj for some

value of λ ∈ Rt such that
∑

j∈[t] λj = 1. A set of points is said to be affinely

independent if no point in it can be obtained as an affine combination of other

points in that set.

Definition 3.16: Polyhedral dimension, full dimension. The dimen-

sion of a polyhedron P , denoted as dim(P ), is the maximum cardinality of a

set of affinely independent points in P minus 1. A polyhedron P ⊂ Rn is said

to be full-dimensional if dim(P ) = n.

In the example of Figure 3.2, dim(Conv(X)) = 2. A possible maximum set of

affinely independent points in Conv(X) is {(0, 1), (1, 2), (2, 1)}. The proof of

the following results can be found in [Nemhauser and Wolsey, 1988].

Theorem 3.3: The 0-dimensional faces of a polyhedron P correspond to the

points in Ext(P ).

Theorem 3.4: A non-empty face F of polyhedron P is a facet if and only

if dim(F ) = dim(P )− 1.

Theorem 3.5: A polyhedron P ⊂ Rn can be minimally represented as P =

{x ∈ Rn |Ax = b,Dx ≥ d}, where Ax = b is any set of n− dim(P ) linearly

independent equalities containing P and Dx ≥ d has exactly one inequality

defining each facet of P .

Theorem 3.6: Suppose that αx ≥ α0 defines a face F of P and let Ax = b

be a set of n− dim(P ) linearly independent equalities containing P . Then, all

inequalities (θα + uA)x ≥ θα0 + ub, where u ∈ R1×n−dim(P ) and θ ≥ 0 are

equivalent, in the sense of defining the same face F .
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Theorem 3.6 indicates that the theoretical investigation of the polyhedra

Conv(X) associated with an LCOP can become considerably more complex

if they are not full-dimensional. Specifically, it is necessary to prove that any

newly discovered family of facet-defining inequalities does indeed define new

facets, i.e., that they are not equivalent to other already known inequalities.

For example, a TSP Subtour Elimination inequality
∑

e∈δ(S)
xe ≥ 2 in (3.5c) is

equivalent to
∑

e∈E(S)

xe ≤ |S|−1, as the latter can be obtained from the former

by subtracting the Degree constraints in (3.5b) corresponding to the vertices

in S.

3.14. Existence of perfect formulations. The conjecture that P ≠ NP is widely

believed to be true. In this paragraph, we assume that it is indeed true. So, it

is not possible to find a polynomially-solvable perfect formulation (natural or

extended) for any NP-hard LCOP. This rules out the existence of two kinds of

perfect formulations for those problems: (i) those that are polynomially-sized;

and (ii) those that have an exponentially large number of constraints, but

those constraints can be separated in polynomial time. The first impossibility

is known to be true since the Ellipsoid method proved that linear program-

ming belongs to P [Khachiyan, 1979]. The second impossibility is a less direct

consequence of the Ellipsoid method, a result known as the equivalence of

separation and optimization [Grötschel et al., 1981]: it is possible to solve an

LP with exponentially many constraints in polynomial time, provided that

its constraints can be separated in polynomial time. By the way, by duality,

this also proves that it is possible to solve an LP with exponentially many

variables in polynomial time, provided that its pricing subproblem can be

solved in polynomial time.

Most people also believe that if an LCOP belongs to P then it is possible

to find a polynomially-solvable perfect formulation for it. Interestingly, it is

known that some problems in P do not admit perfect formulations (natu-

ral or extended) with polynomial size. For example, the matching problem

has a perfect formulation [Edmonds, 1965] that includes an exponential fam-

ily of inequalities (blossom inequalities) that can be separated in polynomial

time. However, no perfect formulation with polynomial size is possible for that
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problem [Yannakakis, 1991, Rothvoß, 2017].

3.15. Concorde TSP solver. The exceptional 600-pages book Applegate et al.

[2007] is fully devoted to the TSP, in particular to its computational aspects.

Besides covering the history of the problem and the contributions by hundreds

of researchers, several of its chapters are focused on the BCA implemented

in Concorde [2020], a code by the book authors that has been producing the

best exact results since 1992. In particular, in 2006, it solved pla85700, the last

open instance in the original TSPLIB [Reinelt, 1991]. Concorde is perhaps the

most sophisticated code ever written for solving a particular COP (130,000

lines in language C at that time). Truly, besides solving very large instances

of the most famous NP-hard COP, several ideas first introduced in Concorde

were eventually adopted in the algorithms for solving other COPs or even

on general MIP solvers. For example, we can mention the concept of strong

branching (Note 3.10).

By the way, Concorde could be classified as a branch-cut-and-price algorithm

because only a small part of the O(|V |2) edge variables in Formulation (3.5),

those that are more likely to appear in an optimal fractional solution, are

included in the initial LPs. As the algorithm progresses, pricing over the re-

maining edge variables is performed for adding variables with negative reduced

cost. The pricing is also very useful for fixing most of the variables (usually

those that correspond to longer edges) to zero by reduced costs and eliminat-

ing them definitely. Yet, that pricing can be performed by inspection, i.e., by

explicitly evaluating the reduced costs of each variable (actually, as described

in Section 12.3 of Applegate et al. [2007], Concorde uses some tricks for effi-

ciently pricing blocks of variables). Pricing by inspection does not fit in the

definition of CG-based algorithm given in the Introduction of this book, which

requires that the pricing should be solved as a subproblem by an optimization

algorithm. So, we prefer classifying Concorde as a BCA. We believe that such

a stricter definition makes sense. Otherwise, even the RSA would have to be

considered a CG-based algorithm! Moreover, the “true” BCPAs that will be

described in the next chapter have to face the crucial issue of how the new

dual variables from the added cuts interfere with the algorithm used in the

pricing. That issue does not exist when the pricing is performed by inspection.
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3.16. Projection of extended formulations. Extended formulations can be

compared against natural formulations through the concept of projection. The

comparison is frequently carried out using ad hoc reasoning to demonstrate

that specific families of inequalities in the natural space are indeed implied

by the extended formulation. However, there are some methods that can help

with that.

Given an extended formulation for a fixed set X (not a general LCOP formu-

lation), the Fourier-Motzkin elimination method (see Schrijver [1986]) can be

used to compute all inequalities defining its projection onto the natural space

by eliminating one extended variable at a time. The method is implemented

in packages like PORTA and Parma Polyhedra Library and can be used for

analyzing small examples (the size of the output grows exponentially with the

size of the input), providing useful insights for a more theoretical polyhedral

investigation.

However, there is another useful mathematical tool. Consider an extended

formulation in the following format: min cx subject to (x,y) ∈ P, x ∈ Zn, y ∈
Rp, where P = {(x,y) ∈ Rn×Rp : Ax+Dy ≥ b}, matrices A and D having

m rows. The projection cone of P onto x is defined as Cx(P ) = {u ∈ R1×m
+ :

uD = 0}. For each u ∈ Cx(Q), it is clear that (uA)x ≥ (ub) is a valid

inequality in the space of the natural x variables. The following result states

that all inequalities that define the polyhedron Projx(P ) ≡ {x ∈ Rn : ∃y ∈
Rp,Ax+Dy ≥ b} can be obtained by u multipliers that cancel the extended

y variables:

Theorem 3.7: If P = {(x,y) ∈ Rn×Rp : Ax+Dy ≥ b}, then Projx(P ) =

{x ∈ Rn : (uA)x ≥ (ub), ∀u ∈ Cx(P )}.

Theorem 3.7 (see Conforti et al. [2010] for its proof) can be applied in different

ways. One can use it “offline” during a polyhedral investigation: giving a

suitable set of multiplies in Cx(P ) it is possible to prove that a certain family

of inequalities in the x space (already known or not) is implied by the extended

formulation. In principle, one could also use it “on-the-fly”, as a separation

routine in a BCA. Suppose that we want to find a cutting plane (uA)x ≥ (ub)

separating a given point x∗ ∈ Rn from Projx(P ). This can be done by solving
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the following LP:

z∗ = min u(Ax∗ − b) (3.9a)

s.t. uD = 0 (3.9b)∑
i∈[m]

ui = 1 (3.9c)

u ≥ 0. (3.9d)

If z∗ ≥ 0 then x∗ ∈ Projx(P ), otherwise a violated cut is obtained. Constraint

(3.9c) is a possible normalization of the u multipliers, to avoid LP unbounded-

ness. This LP-based separation method can be seen as a particular case of the

Benders decomposition (Note 2.10) where only feasibility cuts are separated

because there are no costs in the extended variables.

3.17. The power of extended formulations There are cases where extended

formulations can be much stronger than natural formulations. For example,

consider the following problem:

Definition 3.17: Steiner Problem in Graphs (SPG). Instance: undi-

rected graph G = (V,E), positive edge costs ce, e ∈ E; and a set of terminal

vertices T ⊆ V . Solutions: edge-set E′ ⊆ E such that the subgraph induced

by E′ has a path connecting any pair of terminals in T . Goal: Minimize the

sum of the costs in E′.

As the costs are positive, the optimal solutions necessarily define trees, known

as Steiner trees. The SPG has the following natural formulation [Aneja, 1980]:

min
∑
e∈E

cexe (3.10a)

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ⊂ V, S ∩ T ̸= ∅, T \ S ̸= ∅ (3.10b)

xe ∈ Z+ ∀e ∈ E. (3.10c)

Constraints (3.10b) are known as undirected Steiner Cut inequalities. They
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are facet-defining and can be separated in polynomial time. Several other

families of facet-defining inequalities were found, including Partition, Odd-

Hole, Anti-Hole and Wheel inequalities [Chopra and Rao, 1988a,b], for which

heuristic separation procedures were provided. In spite of those efforts, the

performance of BCAs using those inequalities is not good. The problem is

that the starting formulation (3.10) is too weak. Even the tiny instance where

V = T = {1, 2, 3}, E = {{1, 2}, {1, 3}, {2, 3}} and unitary costs already has

a positive gap: zLP = 1.5, while zIP = 2. Linear relaxation bounds more than

10% away from the optimal are typical on SteinLIB instances. This leaves

a large gap to be closed by the heuristic separation of complex cuts and by

branching.

A much stronger SPG formulation is obtained by using an additional set of

variables. Define a directed graph GD = (V,A) where A contains a pair of

opposite arcs (i, j) and (j, i) for each edge e = {i, j} ∈ E. Choose a ver-

tex r ∈ T . It can be seen that there is a one-to-one correspondence between

Steiner trees in G and Steiner arborescences (directed trees) in GD rooted

at r. Define a binary variable ya for each a ∈ A. The extended formulation

by Wong [1984] (equally strong as a multi-commodity flow formulation inde-

pendently proposed in Claus and Maculan [1983]and also equally strong as

another extended formulation proposed in Lucena [1992]) is:

min
∑
e∈E

cexe (3.11a)

s.t.
∑

e∈δ−(S)

ya ≥ 1 ∀S ⊂ V, r /∈ S, T ∩ S ̸= ∅ (3.11b)

ya ≥ 0 ∀a ∈ A (3.11c)

yij + yji = xe ∀e = {i, j} ∈ E (3.11d)

xe ∈ Z ∀e ∈ E. (3.11e)

Directed Steiner Cut inequalities (3.11b) are much stronger than their undi-

rected counterparts (3.10b). The integrality gaps formulation (3.11) are sel-

dom more than 0.1% on SteinLIB instances (except on artificial instances

created with the intent of being hard). In fact, the highly effective SPG codes

of today, which are capable of quickly solving many instances with tenths of

thousands of vertices, often do not need to separate cuts other than (3.11b);
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their algorithmic effort is focused on devising sophisticated dual ascent (fast

combinatorial algorithms for obtaining good dual feasible solutions) and graph

reductions (based on the propagation of logical implications combined with

reduced cost arguments) procedures in order to speed up the solution of that

very strong linear relaxation [Koch and Martin, 1998, Polzin and Danesh-

mand, 2001, Poggi de Aragão et al., 2001, Uchoa et al., 2002, Polzin and

Daneshmand, 2009, Rehfeldt and Koch, 2021], see Ljubić [2021] for a recent

survey.

The relation between the natural undirected formulation and the extended

directed formulation was studied in Goemans [1994]. It was shown that the

directed formulation implies (by projection, as discussed in Note 3.16) not

only Partition and Odd-Holes inequalities but also a whole zoo of previously

unknown facet-defining inequalities for the Steiner polyhedron. Those new

families of inequalities can be very complex. It is possible to obtain facet-

defining inequalities where coefficients take all integral values between 1 and

a chosen odd number. It is remarkable that a simple family of inequalities

defined in the extended space, which can even be separated in polynomial

time, implies so many facets in the natural space.

The SPG case illustrates the fact that it may be easier to find strong extended

formulations than strong natural formulations. A possible intuitive explana-

tion for that is the following: a single variable in an extended formulation may

be “richer” in the sense of conveying more information than a single natural

variable. In the SPG example, xe = 1 implies that edge e = {i, j} belongs to
an optimal Steiner tree. However, yij = 1 not only also implies that but also

gives the additional information that if e is removed from that tree, vertices r

and i will remain in the same subtree. So, edge e may be used for connecting

r with vertices in the subtree containing j but not with vertices in the sub-

tree containing i. That information is necessary for deriving the strengthened

family of cuts (3.11b).

The existence of a much stronger extended formulation with only two times

more variables (the x variables in (3.11) may be eliminated), as happens in

the SPG, is very exceptional. Typically, obtaining a significantly stronger ex-

tended formulation requires using many times more variables. Yet, there are

numerous examples of very large strong extended formulations [Gouveia et al.,
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2019] and even pseudo-polynomially large extended formulations (see for ex-

amples Martin [1987], Valério de Carvalho [2002], Uchoa [2011], Sadykov and

Vanderbeck [2013], de Lima et al. [2022, 2023]) that perform quite well in

practice. By the way, the DW reformulation for IP, which will be described in

the next chapter, can be viewed as a technique for obtaining stronger extended

formulations with exponentially many additional variables.

Exercises

E3.1. Solve the following IP with the BBA, showing the enumeration tree.

Choose the branching variable by the most fractional rule (break ties by

largest cost) and explore the tree using the depth-first strategy. Use a

package to solve the LPs in each node.

max z = 4x1 + 9x2 + 7x3 + 3x4

s.t. 2x1 + 3x2 − x3 + 3x4 = 13

x1 + 4x2 ≤ 5

2x1 + 3x2 ≤ 7

4x3 + 3x4 ≤ 20

2x3 + 5x4 ≤ 25

x ∈ Z4
+.

E3.2. Fixing variables with dual feasible solutions. Let UB be the value

of the best known solution for an IP in format min cx subject to Ax ≥
b, x ∈ Zn

+ and let ρ′ ∈ R1×m
+ be a feasible solution (not necessarily optimal)

to the dual of its linear relaxation. Generalize Theorem 3.2 by proving that

for every variable xj , j ∈ [n], such that ρ′b+ cj − ρ′aj ≥ UB should have

value zero in any improving IP solution.

E3.3. Fixing variables to upper bounds. Consider an IP in format min cx

subject to Ax ≥ b, x ≤ u, x ∈ Zn
+, where u is an integer vector of variable

upper bounds. Let UB be the value of its best known solution. After solving
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its linear relaxation, define gap = UB− zLP (if zIP is known to be integer,

gap = UB − ⌈zLP⌉). Let θ∗ ∈ R1×n
− be the vector with the optimal dual

variables corresponding to constraints x ≤ u. Prove that every variable

xj , j ∈ [n], such that −θ∗j ≥ gap should have value uj in any improving

MIP solution. (Modern LP solvers treat variable upper bound constraints

implicitly (Note 1.6), so their hidden dual variables θ are obtained from

the provided reduced costs as θ∗j = min{0, c̄∗j}, j ∈ [n]. It is only possible

that c̄∗j < 0 if x∗j = uj .)

E3.4. A Rectangular Partition problem. Given a rectangle R in the plane

defined by its integer corner points (0 0), (L 0), (L W ), and (0 W ), and a

set P of n integer points in the interior of R, the solutions are partitions

of R into subrectangles such that no points in P lie in the strict interior

of any subrectangle. The goal is to minimize the total length of the cuts

(not necessarily guillotine) required to obtain the rectangular partition.

For example, if L = 10, W = 8, and P = {(2 3), (5 7), (6 2), (6 4), (8 5)},
the optimal solution (shown in Figure 3.4) has length 21. Formulate the

problem as a SPP having O(min{n2, LW}) rows and O(min{n4, (LW )2})
variables. If in trouble, check de Meneses and de Souza [2000].

(a) Instance (b) Optimal solution

Figure 3.4: Rectangular Partition instance and its optimal solution
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Chapter 4

Dantzig-Wolfe Decomposition
and Column Generation

for Integer Programming

Dantzig-Wolfe reformulation and column generation play an important role in in-

teger programming, by offering a practical way of obtaining stronger formulations

for some very important combinatorial optimization problems. We present branch-

and-price and branch-cut-and-price, the enhanced algorithms that arise when com-

bining column generation with standard branch-and-bound and branch-and-cut al-

gorithms.

4.1. Dantzig-Wolfe Reformulation for IP
Consider the following IP:

zIP = min cx (4.1a)

s.t. Ax = b (4.1b)

x ∈ P (4.1c)

x ∈ Zn, (4.1d)

where polyhedron P is defined by a set of linear constraints. It is assumed that P

is bounded, so the set Int(P ) = P ∩ Zn is finite. Any x ∈ Int(P ) can be described

as an integer convex combination of those points: x =
∑

q∈Q qλq,
∑

q∈Q λq = 1,

λ ∈ Z|Q|
+ , where Q = Int(P ). That combination is trivial, in the sense that λx should
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be 1 and λq should be 0 for any q ∈ Q \ {x}. Anyway, the IP can be rewritten as:

zIP = min cx (4.2a)

s.t. Ax = b (4.2b)

x =
∑
q∈Q

qλq (4.2c)

∑
q∈Q

λq = 1 (4.2d)

λ ∈ Z|Q|
+ . (4.2e)

By eliminating the x variables using (4.2c), the final Dantzig-Wolfe reformulated IP

is:

zIP = min
∑
q∈Q

(cq)λq (4.3a)

s.t.
∑
q∈Q

(Aq)λq = b (4.3b)

∑
q∈Q

λq = 1 (4.3c)

λ ∈ Z|Q|
+ . (4.3d)

The Dantzig-Wolfe reformulation for linear programming yields an alternative

equivalent LP. However, the Dantzig-Wolfe reformulation for integer programming

can produce something different. The following result deserves to be called the

fundamental theorem of column generation for integer programming :

Theorem 4.1: The reformulated IP (4.3) is equally strong as:

zIP = min cx (4.4a)

s.t. Ax = b (4.4b)

x ∈ Conv(Int(P )) (4.4c)

x ∈ Zn, (4.4d)

which can be stronger than the original IP (4.1) if P does not have the integrality

property, i.e., if P has fractional extreme points.
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Proof. Reformulated IP (4.3) is equivalent to the explicit reformulated IP (4.2).

Consider the linear relaxation of the latter. By Definition 2.2, the set {x ∈ Rn :

x =
∑

q∈Q qλq,
∑

q∈Q λq = 1, λ ≥ 0} = Conv(Int(P )), where Q = Int(P ), which

proves that (4.2) and (4.3) are equally strong as (4.4). If Ext(P ) \Zn = ∅ then P =

Conv(Int(P )), so (4.3) is equally strong as (4.1). Otherwise, P ⊃ Conv(Int(P )),

so (4.3) can be stronger than (4.1).

Theorem 4.1 indicates that the Dantzig-Wolfe reformulation can be used for

strengthening an original formulation, as it implicitly obtains all inequalities defining

Conv(Int(P )), an operation sometimes referred to as a partial convexification, or,

more precisely, as the convexification of P . As will be seen in some examples in this

chapter, sometimes the resulting formulations are a lot stronger. However, this is

not for free. The reformulated IP (4.1) usually has a huge number of variables. This

in itself is not a problem, since we can use the Column Generation Algorithm for

solving its linear relaxation, which defines the following Master LP:

zM = min
∑
q∈Q

(cq)λq (4.5a)

s.t.
∑
q∈Q

(Aq)λq = b (4.5b)

∑
q∈Q

λq = 1 (4.5c)

λ ≥ 0. (4.5d)

The pricing subproblem is:

c∗ = min (c− π∗A)x− ν∗ (4.6a)

s.t. x ∈ P (4.6b)

x ∈ Zn, (4.6c)

where (π∗, ν∗) are optimal RMLP solutions (π and ν are the dual variables cor-

responding to (4.5b) and (4.5c), respectively). Here is the potential problem: the

pricing subproblem is an IP, which in general is an NP-hard problem.

It is usual to say that Constraints (4.1b) are the ones chosen to be kept in the

master, while Constraints (4.1c) are the ones chosen to go to the subproblem or to

be convexified. Actually, (4.1b) do not need to only contain linear equations. If there
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are also linear inequalities in it, the corresponding constraints in (4.3b) and (4.5b)

will keep the same sense.

We provide an example of IP reformulation. Consider the following original IP:

zIP = min −6x1 + 5x2

s.t. −15x1 + 5x2 ≤ 4

7x1 − 20x2 ≤ 4

−15x1 + 10x2 ≤ 14

2x1 + 2x2 ≤ 7

x2 ≥ 0

x ∈ Z2.

(4.7)

The set of solutions of that IP is X = {(0, 0), (1, 1), (2, 1), (1, 2)}. The optimal

integer solution is x = (2, 1), with zIP = −7; while its linear relaxation yields

x = (74/27, 41/54) = (2.74, 0.76) and zLP = −683/54 = −12.65. Consider a

Dantzig-Wolfe reformulation of that IP that keeps the first two inequalities in

the master and uses the remaining three inequalities for defining P . It can be

seen that Int(P ) = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (1, 2)} and that

Conv(Int(P )) = {x ∈ R2 : −x1 + x2 ≤ 1, x1 + x2 ≤ 3, x1 ≥ 0, x2 ≥ 0}. By
Theorem 4.1, the resulting Master LP will be equivalent to the linear relaxation

of the stronger formulation gained by replacing the constraints defining P by the

constraints defining Conv(Int(P )). By doing that and solving the corresponding

LP, we would get x = (64/27, 17/27) = (2.37, 0.63) with zLP = −299/27 = −11.07.
So, the reformulation was successful on reducing the gap.

As that example has only two variables, the reformulation procedure can be

depicted graphically. Figure 4.1a shows in pale orange the linear relaxation of the

original IP, the constraints kept in the Master are dashed. The set Conv(X) is

shown in orange. Then, Figure 4.1b shows in pale pink P and in pink Conv(Int(P )).

Finally, Figure 4.1c shows the strengthened linear relaxation that is obtained when

the constraints that define P are replaced by the constraints defining Conv(Int(P )).

In more realistic cases, it is not possible to perform the formulation strengthening

by explicitly computing the linear constraints defining Conv(Int(P )). However,

the strengthening can be obtained by solving the MLP using the CGA, as will be
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x1

x2

(a) Original Formulation

x1

x2

(b) Convexification of Int(P )

x1

x2

(c) Strengthened Formulation

Figure 4.1: Dantzig-Wolfe reformulation of an IP
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illustrated in our example. The subproblem has the following format:

c∗ = min

(
(−6 5 )− π∗

(
−15 5

7 −20

))
x− ν∗

= (−6 + 15π∗
1 − 7π∗

2)x1 + (5− 7π∗
1 + 20π∗

2)x2 − ν∗

s.t. −15x1 + 10x2 ≤ 14

2x1 + 2x2 ≤ 7

x2 ≥ 0

x1 , x2 ∈ Z.

The constraints in that IP are those that define the polyhedron P , plus the in-

tegrality constraint. Suppose that one realizes that point ( 0 0 ) ∈ Int(P ), so the

convexity constraint can be relaxed to ≤ 1. There is no need for artificial variables

in the first RMLP, that is:

zRM = min 0

s.t. ≤ 4

≤ 4

≤ 1.

By trivially solving this void LP, one gets zRM = 0, π∗ = ( 0 0 ) and ν∗ = 0. So, the

first subproblem IP is:

c∗ = min − 6x1 + 5x2

s.t. x ∈ Int(P ).

Its solution is x∗ = ( 3 0 ), with c∗ = −18. The corresponding column is inserted

into the RMLP, which becomes:

zRM = min − 18λ1

s.t. − 45λ1 ≤ 4

21λ1 ≤ 4

λ1 ≤ 1

λ1 ≥ 0.

By optimizing it, one gets zRM = −24/7 = −3.42, π∗ = ( 0 − 6/7 ) and ν∗ = 0. The
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second subproblem IP is c∗ = min 0x1− 85/7x2, subject to x ∈ Int(P ). Its solution

yields x∗ = ( 1 2 ), with c∗ = −170/7. The corresponding column is inserted into

the RMLP, which becomes:

zRM = min − 18λ1 + 4λ2

s.t. − 45λ1 − 5λ2 ≤ 4

21λ1 − 33λ2 ≤ 4

λ1 + λ2 ≤ 1

λ1 , λ2 ≥ 0.

By reoptimizing the RMLP, zRM = −299/27 = −11.07, π∗ = ( 0 − 11/27 ) and

ν∗ = −255/27. The third subproblem IP is c∗ = min−85/27x1− 85/27x2+255/27,

subject to x ∈ Int(P ). One of its optimal solutions is x∗ = ( 3 0 ), with c∗ = 0.

This proves that the current RMLP is optimal, so zRM = zM is a valid lower bound

on zIP. Now, the primal solution of the RMLP (λ1 = 37/54, and λ2 = 17/54) can

be used for computing the fractional solution of the improved linear relaxation:

x = 37/54 ( 3 0 ) + 17/54 ( 1 2 ) = ( 2.37 0.63 ).

Some observations about DW reformulation for integer programming:

• Suppose the following MIP:

zIP = min cx+ hy (4.8a)

s.t. Ax+Dy = b (4.8b)

(x,y) ∈ P (4.8c)

x ∈ Zn, (4.8d)

where y ∈ Rp is the vector of variables not required to be integer. A DW

reformulation of it keeping (4.8b) in the master (see Exercise E 4.6) would

produce a linear relaxation that is equivalent to replacing (4.8c) with (x,y) ∈
Conv({(x,y) ∈ P,x ∈ Zn}). The pricing subproblems would be MIPs in the

following format:

c∗ = min (c− π∗A)x+ (h− π∗D)y − ν∗ (4.9a)

s.t. (x,y) ∈ P (4.9b)

x ∈ Zn. (4.9c)
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An optimal solution (x∗,y∗) with negative reduced cost generates column(
Ax∗+Dy∗

1

)
with cost cx∗ + hy∗ to the MLP.

• The case where an unbounded polyhedron P leads to a set Int(P ) with infinity

cardinality is too technical and has very little practical interest, so it will not be

addressed. As mentioned in Section 2.4, it is usually easy to avoid unbounded

subproblems by adding suitable lower and upper bounds lj ≤ xj ≤ uj , for each

individual variable xj , in the subproblem that it appears. This is particularly

true for the kind of IPs that we are mostly interested in this book, those

that formulate LCOPs. In that context, the variables are non-negative (see

Definition 3.4) and are almost always restricted to fairly small ranges.

• As happens with LPs, the most important structure that can be exploited

is the case where the pricing decomposes into multiple independent subprob-

lems (a.k.a. the block-diagonal case, see Note 2.8). In that case, either if the

subproblems are distinct or identical, the techniques for solving the linear re-

laxation of the resulting reformulated IPs are similar to those presented in

Section 2.3, excepting that each of the subproblems defines an IP.

But now the structure of the decomposed subproblems has crucial importance.

Solving those IPs using general MIP solvers is often too time-consuming.

The column generation can work much better if the subproblems define well-

structured and relatively simple LCOPs for which specially tailored algorithms

do exist. Yet, having LCOPs in P as subproblems may be less interesting be-

cause those problems are likely to admit perfect formulations (see Note 3.14).

For example, we know perfect formulations for minimum spanning trees, mini-

mum cost flows (including its particular cases, like the shortest path problem),

or minimum cost matchings. This means that if P is not already a perfect for-

mulation for that LCOP, i.e. if P does not have the integrality property, it is

possible to replace P with a perfect formulation and get the same improved

bounds that would be obtained by the DW reformulation, possibly taking less

computational time.

Indeed, the DW reformulation is often most interesting when the resulting

subproblems are LCOPs that are NP-hard but well-solved in practice. In

those cases, the implicit convexification provided by the DW reformulation

can achieve the improved bounds that could not be practically obtained by
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the explicit convexification of Int(P ). A typically favorable situation is when

the subproblem LCOP is weakly NP-hard, i.e., it can be solved by a pseudo-

polynomial algorithm. Yet, there are many examples of successful applications

that require solving strongly NP-hard subproblems. The balance “NP-hard
yet well-solved” is often subtle and will be a central theme in this book.

We remark that having an NP-hard pricing subproblem in a BPA is not

similar to having an NP-hard separation subproblem in a BCA. In the latter

situation, if the separation subproblem for some families of cuts happens to

be intractable, heuristics may be used. When the heuristics fail, some violated

cuts may have been missed, but one certainly has a valid bound. There is no

need to ever call an exact separation (except perhaps over integer solutions if

the constraints are needed to ensure their feasibility; however separation over

integer solutions is usually easy, as discussed in Note 5.3). On the other hand,

in the CG situation, even with the best possible pricing heuristics, at least one

call to the exact pricing is necessary to establish a valid bound (Theorem 2.6

is only valid if c∗ is indeed the optimum subproblem value). If the call to the

exact pricing takes too much time, the whole algorithm fails. As a consequence

of that, the pricing subproblem should be consistently well-solved for the size

of instances that one desires to handle.

As will be seen in the next sections, a very important concern in designing a

column generation based algorithm is how the possible branching and cutting

operations can affect the potentially delicate structure of the pricing subprob-

lem.

4.2. The Branch-and-Price Algorithm
The Column Generation Algorithm can solve the linear relaxation of a DW refor-

mulated IP. However, in order to find an optimal integer solution, the CGA should

be combined with the BBA, in the so-called Branch-and-Price Algorithms (BPAs).

The BPAs can be classified as being either robust or non-robust.

Definition 4.1: Robust branching, robust BPA. A branching in a BPA is

robust if the structure of the pricing subproblems in the resulting children nodes

remains unchanged. A branching that forces changes in the pricing structure of any
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children node is non-robust. A BPA that only performs robust branchings is said to

be robust, otherwise it is non-robust

4.2.1. Branching on the generated variables

(non-robust)
The first idea for creating a BPA would be just using the BBA for solving the

reformulated IP over the λ variables, with the only difference being that the CGA

would solve the LPs in each node of the tree. In fact, the linear relaxation to be

solved at the root node corresponds to the Master LP, which the CGA can indeed

solve. If its optimal solution λ∗ is integer, the problem is finished. Otherwise, a

variable λq′ such that λ∗
q′ is fractional should be selected for branching. Consider

the two resulting children nodes:

• If there is a single subproblem, so that MLP has format (4.5), the ≥ branch-

ing constraint is necessarily λq′ ≥ 1. This means that the resulting MLP can

be easily solved by inspection. Either the solution λq′ = 1 and the remain-

ing variables zero is the only feasible solution (and therefore optimal) or the

problem is infeasible.

However, the case where the reformulation leads to multiple subproblems is not

that trivial. Consider a Master LP in format (2.15). In that case, a branching

λk′
q′ ≥ ⌈λk′∗

q′ ⌉ changes the Master LP to:

min z =
∑
k∈[K]

∑
q∈Qk

(ckq)λk
q + (ck

′
q′)⌈λk′∗

q′ ⌉ (4.10a)

s.t.
∑
k∈[K]

∑
q∈Qk

(Akq)λk
q = b− (Ak′q′)⌈λk′∗

q′ ⌉ (4.10b)

∑
q∈Qk

λk
q = Uk k ∈[K], k ̸= k′ (4.10c)

∑
q∈Qk′

λk′
q = Uk′ − ⌈λk′∗

q′ ⌉ (4.10d)

λ ≥ 0. (4.10e)

The CGA algorithm should also be used for solving that MLP. The columns

in the parent node RMLP may be used for hot-starting it, but additional
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artificial variables may also be needed for initialization. Then, after the CGA

finishes, a post-processing step should add the value ⌈λk∗
q′ ⌉ to the value of the

variable λk∗
q′ . The modified MLP (4.10), sometimes referred to as a residual

MLP, has a structure that is very similar to MLP (2.15), only the RHS of

the constraints was changed and a constant term was added to the objective

function. This means that the same CGA used in the parent node can solve it,

without any change in the pricing subproblem. If the RHS of (4.10d) becomes

zero, this means that subproblem k′ will simply not be invoked by the CGA

for solving the corresponding child node.

Imposing lower bounds to the generated variables in a Master LP can be done

without changing the structure of the pricing. By the way, as will be seen in

Chapter 6, this fact can be exploited for creating efficient diving heuristics.

• If there is a single subproblem, so that MLP has format (4.5), the ≤ branch-

ing constraint is necessarily λq′ ≤ 0. This means that variable λq′ should be

removed from the RMLP in the child node. But this is not enough. The sup-

pressed variable λq′ will have a negative reduced cost and will probably be

generated again by the CGA. This may only not happen if some other gener-

ated variables make zRM drop to exactly the same z value of the parent node.

In any case, the effect of that branching will be null. The only way of avoiding

this is to include the constraint x ̸= q′ in pricing subproblem (2.17). Here we

have a potentially serious issue. As said before, many effective column genera-

tion based algorithms have pricing subproblems that correspond to NP-hard
LCOPs that can be reasonably well-solved by specific algorithms, like, for

example, a pseudo-polynomial Dynamic Programming Algorithm. The addi-

tional constraints for enforcing that x ̸= q′ break the structure of the LCOP

and require algorithmic adaptations that may make the pricing significantly

less efficient (not to mention the effort of having to understand and adapt

complex codes that may have been produced by third-parties). The problem

is often cumulative. A few such “bad branchings” may still be well-handled

by the adapted pricing, but too many of them may make it so slow that the

whole BPA may fail.

Consider the case with multiple subproblems and a Master LP in format
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(2.15). In that case, a branching λk′
q′ ≤ ⌊λk′∗

q′ ⌋ changes the Master LP to:

min z =
∑
k∈[K]

∑
q∈Qk

if k=k′,
q′ ̸=q′

(ckq)λk
q + (ck

′
q′) λk′

q′ (4.11a)

s.t.
∑
k∈[K]

∑
q∈Qk

if k=k′,
q′ ̸=q′

(Akq)λk
q + (Akq′) λk′

q′ = b (4.11b)

∑
q∈Qk

λk
q = Uk k ∈ [K], k ̸= k′ (4.11c)

∑
q∈Qk′

q′ ̸=q′

λk′
q + λk′

q′ = Uk′ (4.11d)

λk′
q′ ≤ ⌊λk′∗

q′ ⌋ (4.11e)

λ ≥ 0. (4.11f)

This means that, unless ⌊λk′∗
q′ ⌋ = 0, variable λk′

q′ should be kept in the RMLP

in the child node, but with upper bound (4.11e). The pricing subproblem k′

should be changed for including the constraint xk′ ̸= q′. If this is not done,

a second copy of the variable λk′
q′ will be generated and the branching will be

nullified. Note that the dual variable of (4.11e) does not appear in any pricing

subproblem, as all possible generated variables have coefficient zero in it.

Imposing upper bounds to the generated variables in a Master LP changes

the structure of the pricing. Therefore, branching schemes that do that are

non-robust.

Branching over individual λ variables has a second drawback: it usually leads

to very unbalanced BBA trees. Consider for example a branching of format λk′
q′ ≥ 1

or λk′
q′ ≤ 0. The first branching (besides not changing the pricing) is likely to be

good, in the sense of moving z values significantly. On the other hand, the second

branching (besides making the pricing harder) is not likely to be good. This happens

because in realistic problems there is a huge number of λ variables. Fixing a single

such variable to zero barely changes the problem and the z values probably will

not move significantly. Therefore, as will be seen later in this chapter and also in

Chapter 8, other more balanced schemes that branch over linear expressions over

the generated λ variables were proposed. Yet, those schemes are still non-robust:
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the pricing is changed in at least one of the children nodes.

S1 : λ(30) = 0.69,
λ(12) = 0.31,
z = −11.07

S2 : z = ∞
Infeasible

Pruned by bound

S3 : λ(20) = 0.5,
λ(21) = 0.5,
z = −9.50

S4 : λ(21) = 1,
z = −7

Pruned by integrality

S5 : λ(12) = 0.21,
λ(20) = 0.79,
z = −8.60

S6 : z = ∞
Infeasible

Pruned by bound

S7 : λ(12) = 0.075,
λ(10) = 0.925,
z = −5.25

Pruned by bound

λ(30) ≥ 1 λ(30) ≤ 0

λ(21) ≥ 1 λ(21) ≤ 0

λ(20) ≥ 1 λ(20) ≤ 0

Figure 4.2: BPA tree with branching over λ variables (non-robust)

A BPA tree solving the example in page 114 is shown in Figure 4.2. When

branching on λ variables it is recommended to explore the ≥ child node before the

≤ child. Not only the CGA in the ≥ child is likely to be easier, but the chances

of quickly finding an integer solution are much larger. Node S2 is easily solved by

inspection. As the point ( 3 0 ) does not satisfy the constraints kept in the master,

the node is infeasible. In order to solve S3, the constraint x ̸= ( 3 0 ) should be added

to the subproblem IP. When Int(P ) only contains binary vectors, a constraint like

x ̸= q′ can be enforced by the linear inequality
∑

j∈[n] q
′
jxj+

∑
j∈[n](1−q′j)(1−xj) ≤

n− 1, where q′j is the j-th element of q′. If this is not the case, the linear inequality

should be produced by considering the particular structure of Int(P ). In the case

of S3, the constraint x1 ≤ 2 cuts ( 3 0 ) but is valid for all other points in Int(P ).

Node S4 is also solved by inspection and finds the integer solution λ(21) = 1, with

value z = −7. Node S5 corresponds to S3 plus x ̸= ( 2 1 ), the linear inequality

2x1+x2 ≤ 4 can enforce that. Node S6 is infeasible. In S7, the additional constraint

x ̸= ( 2 0 ) can be enforced by x1 ≤ 1. As the CGA in that node finishes with
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z = −5.25, S7 is pruned by bound.

4.2.2. Branching on the original variables (robust)
As seen at the beginning of this chapter, the original IP (4.1) is equivalent to the

explicit reformulated IP (4.2). However, it is also equivalent to

zIP = min cx (4.12a)

s.t. Ax = b (4.12b)

x =
∑
q∈Q

qλq (4.12c)

∑
q∈Q

λq = 1 (4.12d)

λ ≥ 0 (4.12e)

x ∈ Zn. (4.12f)

This means that it is possible to find the optimal solution for the original IP by only

enforcing that the original variables x are integer. So, given a solution λ∗ to the

Master LP (4.5), we may use (4.12c) to convert it to a solution x∗. If x∗ is integer

then it is also the optimal solution for (4.1) and the problem is finished. Otherwise,

a variable xj such that x∗j is fractional should be selected for branching. Consider

the branching constraints xj ≥ ⌈x∗j⌉ and xj ≤ ⌊x∗j⌋. Using (4.12c) again, they can

be translated to equivalent constraints
∑

q∈Q qjλq ≥ ⌈x∗j⌉ and
∑

q∈Q qjλq ≤ ⌊x∗j⌋,
respectively, over the λ variables. Those new branching constraints will introduce

new dual variables to the MLPs. However, those dual variables do no harm to the

pricing subproblem, since they only affect its objective function, not its structure.

The procedure will be illustrated in our example. A BPA tree using branching

over the x variables is shown in Figure 4.3. In Node S1, the converted solution is

x∗ = 37/54 ( 3 0 ) + 17/54 ( 1 2 ) = ( 2.37 0.63 ). Suppose that x2 is chosen for the

first branching. Node S2, corresponding to x2 ≥ 1 would start with the following
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S1 : λ(30) = 0.69, λ(12) = 0.31
=⇒ x1 = 2.37, x2 = 0.63,

z = −11.07

S2 : λ(30) = 0.5, λ(12) = 0.5
=⇒ x1 = 2, x2 = 1,

z = −7
Pruned by integrality

S3 : λ(30) = 0.19
=⇒ x1 = 0.57, x2 = 0

z = −3.43
Pruned by bound

x2 ≥ 1 x2 ≤ 0

Figure 4.3: BPA tree with branching over x variables (robust)

RMLP:
zRM = min 99a1 − 18λ1 + 4λ2

s.t. − 45λ1 − 5λ2 ≤ 4

21λ1 − 33λ2 ≤ 4

x2 ≥ 1 � a1 + 2λ2 ≥ 1

λ1 + λ2 ≤ 1

a1, λ1, λ2 ≥ 0.

Variables λ1 and λ2 are inherited from the parent node. The third constraint is

the branching constraint, as indicated in the remark. In that particular case, it is

not really necessary, but it is recommended to include an artificial variable in any

newly added constraint to make sure that the resulting RMLP is still feasible. By

solving it, we get zRM = −7. The primal solution is λ1 = λ2 = 0.5 and the dual

solution is π∗ = ( 0 0 11 ) and ν∗ = −18. Now we have a new dual variable π3,

corresponding to the branching constraint. How to deal with that dual variable in

the pricing subproblem? Exactly as if x2 ≥ 1 was part of the original IP and kept

in the master. So, the subproblem becomes:

c∗ = min

(−6 5 )− π∗

−15 5

7 −20
0 1


x− ν∗

= (−6 + 15π∗
1 − 7π∗

2)x1 + (5− 7π∗
1 + 20π∗

2 − π∗
3)x2 − ν∗

s.t. x ∈ Int(P ).

This means that a branching constraint over the x variables only affects the objective
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function of the subproblem, not its structure. In our example, the first pricing IP

on node S2 is c∗ = min−6x1 − 6x2 + 18, subject to x ∈ Int(P ). One of its optimal

solutions is x∗ = ( 1 2 ), with c∗ = 0. Therefore, the current RMLP solves the node.

The solution x∗ = 0.5 ( 3 0 ) + 0.5 ( 1 2 ) = ( 2 1 ) is integer, so the node is pruned

by integrality. The node S3 corresponding to x2 ≤ 0 is solved in a similar way. The

first RMLP in that node is:

zRM = min 99a1 − 18λ1 + 4λ2

s.t. − 45λ1 − 5λ2 ≤ 4

21λ1 − 33λ2 ≤ 4

x2 ≤ 0 � − a1 + 2λ2 ≤ 0

λ1 + λ2 ≤ 1

a1, λ1, λ2 ≥ 0.

Note that the artificial variable has coefficient −1 in the new constraint, making

sure that the RMLP is feasible. By solving it, zRM = −3.43. The primal solution

is λ1 = 52/273 = 0.19, λ2 = 0 and the dual solution is π∗ = ( 0 − 6/7 − 85/7 )

and ν∗ = 0. The pricing IP is c∗ = min 0x1 + 0x2, subject to x ∈ Int(P ), which

obviously leads to c∗ = 0. Therefore, the current RMLP is optimal, and z = −3.43
is the node value. So, S3 is pruned by bound.

In any case, branching over the original x variables (or over their linear ex-

pressions, see Note 3.11) can be done without changing the structure of the pricing.

Therefore, a BPA that only uses such kind of branching is robust.

If the branching over the x variables has such a nice property, the reader may

be wondering why one would ever want to design a BPA algorithm that performs

non-robust branchings over the λ variables. The issue is actually more complex, as

will be seen next:

• On some important LCOPs, as in the Cutting Stock Problem discussed in

Section 4.4.2, the original IP formulation is highly symmetrical and leads to

the case where the DW reformulation produces a large number U of identical

subproblems. As discussed on page 32, that kind of symmetry means that

the same λ∗ solution can be converted into many possible alternative x∗ =

(x1∗ . . . xU∗) solutions, by only permuting indices. This means that branching

over a particular xuj variable is almost useless (moreover, such a branching

constraint would make subproblem u distinct from the other subproblems

126



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

in its group, creating the need for solving additional pricing subproblems).

Therefore, in those cases, it may be necessary to perform non-robust branching

over the λ variables.

Yet, effective robust branching may be possible in some cases where the DW

reformulation produces identical subproblems. This may happen if it is possi-

ble to branch on the aggregated original y variables defined in (2.19c). As the

conversion of λ∗ to y∗ given in (2.20) is unique, there are no problems with

symmetric alternative solutions. Moreover, the subproblems remain identical

and a single subproblem needs to be solved. Such a good situation happens

in the CVRP, as discussed in Section 4.4.3.

• There are cases where it is possible to perform effective robust branching

over the x variables, but non-robust branching over linear expressions over λ

variables can be even more effective and lead to smaller BPA trees. In those

cases, the algorithm designer should be careful, avoiding the modified pricing

subproblems becoming too hard for the size of instances that one desires to

handle.

As discussed in Note 4.3, sometimes it is possible to robustly include branching

constraints over the original variables in the subproblems.

4.3. TheBranch-Cut-and-Price Algorithm
Given the potential of DW reformulation and column generation for strengthening

formulations, it is natural to look for ways of obtaining even stronger formulations

by also adding cutting planes, in the so-called Branch-Cut-and-Price Algorithms

(BCPAs). As happens with branchings, there are two kinds of cuts, robust and

non-robust ones.

Definition 4.2: Robust Cut, robust BCPA. A cutting plane in a BCPA is

robust if it does not require any change in the structure of the pricing subproblems.

A cutting plane that does force changes in the pricing structure is non-robust. A

BCPA that only performs robust branchings and only separates robust cuts is said

to be robust, otherwise, it is non-robust.
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4.3.1. Cuts on the generated variables(non-robust)
Given a solution λ∗ to the Master LP (4.5), one may separate a cutting plane having

the following general format: ∑
q∈Q

α(q)λq ≥ α0, (4.13)

where coefficients α(q) are given by an arbitrary function that maps points in Int(P )

to R. Adding such inequality to the MLP creates a new dual variable that will be

denoted by σ. Now, the new MLP should be solved by a CGA in which the pricing

subproblem has format:

c∗ = min (c− π∗A)x− σ∗α(x)− ν∗ (4.14a)

s.t. x ∈ P (4.14b)

x ∈ Zn, (4.14c)

where π and ν are the dual variables corresponding to (4.5b) and (4.5c), respectively.

This means that a newly added cutting plane defined over the λ variables introduces

a non-linear term in the objective function of the pricing, breaking its original

structure and forcing algorithmic adaptations that may make it much less efficient.

The problem is actually cumulative. Each non-robust cut will add a non-linear term

in (4.14a). Some non-robust cuts may still be well-handled by the adapted pricing,

but too many of them may make it so slow that the whole BCPA may fail. The

introduction of many complex non-linear terms in the objective function has all the

potential for turning a quite well-solved (even if NP-hard) LCOP into a nightmare

COP.

Let us illustrate the use of such kind of cut in our example. Consider the final

RMLP shown on page 117. Using the Chvátal-Gomory procedure (Note 3.7) with

multipliers ρ = (0 0.09 0.6) (the second constraint and the convexity constraint have

positive multipliers), the violated inequality 2λ1 − 3λ2 ≤ 0 is obtained. In general,

a violated cut can be separated from the RMLP structure. However, it can only be

used in a BCPA if it has well-defined coefficients α(x) for any point in x ∈ Int(P ).

This always happens for cuts obtained from the Chvátal-Gomory procedure. In our

example, a point (x1, x2) has coefficient ⌊0.09(7x1 − 20x2) + 0.6⌋. The new RMLP
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becomes:

zRM = min + 99a1 − 18λ1 + 4λ2

s.t. − 45λ1 − 5λ2 ≤ 4

21λ1 − 33λ2 ≤ 4

CG cut � a1 + 2λ1 − 3λ2 ≤ 0

λ1 + λ2 ≤ 1

a1, λ1, λ2 ≥ 0.

Whenever a cut is added to an RMLP it is advisable to also add an artificial variable

(not actually needed in this case) to make sure that the resulting RMLP is still

feasible. The new optimal solution is λ1 = 0.6, λ2 = 0.4, and zRM = −9.2, with dual

solution is π∗ = ( 0 0 ), σ∗ = −4.4, and ν∗ = −9.2. The new subproblem should take

into account the non-linear (due to the floor function) effect of the new variable σ

and becomes: c∗ = min−6x1+5x2+4.4⌊0.63x1−1.8x2+0.6⌋+9.2 s.t. x ∈ Int(P ).

This is equivalent to the following IP:

c∗ = min − 6x1 + 5x2 + 4.4w + 9.2

s.t. x ∈ Int(P )

w ≥ (0.63x1 − 1.8x2 + 0.6)− 1 + ϵ

w ∈ Z,

where ϵ is a small constant and w is an auxiliary integer variable devised to assume

the coefficient of the cut in the point (x1, x2) (the linearization trick works because

w has a positive cost in the objective function). By solving it, one of the optimal

solutions is x∗ = ( 3 0 ) and w∗ = 2, with c∗ = 0. So, the column generation

stops. The MLP solution corresponds in the original variables to the point x =

0.6 ( 3 0 ) + 0.4 ( 1 2 ) = ( 2.2 0.8 ).

It is interesting to analyze how a cut defined over the generated variables can

strengthen a formulation. They do that by restricting the possible convex combina-

tions of the points in Int(P ) = Q. Consider our example. The set P ′ = {x ∈ R2 :

x =
∑

q∈Q qλq,
∑

q∈Q λq = 1, λ ≥ 0, λ(10)+λ(20)+2λ(30)−2λ(01)−λ(11)−3λ(12) ≤
0} ⊂ Conv(Int(P )), which can be computed by the Fourier-Motzkin elimination

method (see Note 3.16), is depicted in Figure 4.4a (compare with Figure 4.1b). The

strengthened formulation, shown in Figure 4.4b (compare with Figure 4.1c), is the
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intersection of P ′ with the constraints kept in the Master. Some remarks:

• As always happens with any bounded polyhedron, Ext(Conv(Int(P ))) ⊆
Int(P ). However, Ext(P ′) = {( 0 0 ), ( 0 1 ), ( 1 2 ), ( 2.2 0.8 ), ( 1.75 0.5 )}
has fractional points.

• The added cut implies two new inequalities, 2x1−7x2 ≤ 0 and 2x1−3x2 ≤ 2,

that define distinct facets of P ′ (therefore, one can not dominate the other).

In general, a single cut over the generated variables λ can imply a set of

non-dominated cuts in the original space x (see Note 4.5). This is an indication

of the potential for that kind of cut.

x1

x2

(a) Convexification of Int(P ) restricted
by a single cut over the λ variables. Two
implied inequalities are shown as dotted
red lines

x1

x2

(b) Resulting Strengthened Formulation

Figure 4.4: Effect of a cut over the generated variables

It would be possible to branch at that point of the algorithm. However, we will

finish the non-robust BCPA by adding a second cut. Using again the Chvátal-

Gomory procedure with multipliers ρ = (0 0 0.5 0.5) (the previous cut and the

convexity constraint have positive multipliers), a violated inequality λ1−λ2 ≤ 0 for

the RMLP is obtained. Again, it is necessary to determine its coefficients α(x) for

any point in x ∈ Int(P ). A Chvátal-Gomory cut of rank 2 has “more non-linear”

coefficients since the floor function is applied twice. In this example, a point (x1, x2)
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has coefficient ⌊0.5 ⌊0.09(7x1 − 20x2) + 0.6⌋+ 0.5⌋. The new RMLP becomes:

zRM = min + 99a1 − 18λ1 + 4λ2

s.t. − 45λ1 − 5λ2 ≤ 4

21λ1 − 33λ2 ≤ 4

2λ1 − 3λ2 ≤ 0

rank-2 CG cut � a1 + λ1 − λ2 ≤ 0

λ1 + λ2 ≤ 1

a1, λ1, λ2 ≥ 0.

The new optimal solution is λ1 = 0.5, λ2 = 0.5, and zRM = −7, with dual solution

is π∗ = ( 0 0 ), σ∗ = ( 0 − 11 ), and ν∗ = −7. The changed subproblem becomes:

c∗ = min−6x1 + 5x2 + 11⌊0.5 ⌊0.09(7x1 − 20x2) + 0.6⌋ + 0.5⌋ + 7 s.t. x ∈ Int(P ).

This is equivalent to the following IP:

c∗ = min − 6x1 + 5x2 + 11w2 + 7

s.t. x ∈ Int(P )

w1 ≥ (0.63x1 − 1.8x2 + 0.6)− 1 + ϵ

w2 ≥ (0.5w1 + 0.5)− 1 + ϵ

w ∈ Z2.

By solving it, one of its three optimal solutions is x∗ = ( 3 0 ) and w∗ = ( 2 1 ),

with c∗ = 0. So, the column generation stops. The optimal IP solution is x =

0.5 ( 3 0 ) + 0.5 ( 1 2 ) = ( 2 1 ). By the way, the second cut dominates the first cut

and implies both x1 + 3x2 ≤ 0 and x1 − x2 ≤ 1 in the original space. The BCPA

tree is shown in Figure 4.5. The single node S1 is depicted in more detail: S1.1 is

the original linear relaxation; S1.2 is the improved linear relaxation after the first

cut is added, and S1.3 is the further improved linear relaxation after the second cut

is added.

4.3.2. Cuts on the original variables (robust)
Given a solution λ∗ to the Master LP (4.5), we may use (4.12c) to convert it to a

solution x∗. If x∗ is fractional we may separate a valid inequality αx ≥ α0 cutting
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S1.1 : λ(30) = 0.69, λ(12) = 0.31 =⇒ x1 = 2.37, x2 = 0.63, z = −11.07

Separate CGC with ρ = (0 0.09 0.6)

S1.2 : λ(30) = 0.6, λ(12) = 0.4 =⇒ x1 = 2.2, x2 = 0.8, z = −9.2;

Separate CGC with ρ = (0 0 0.5 0.5)

S1.3 : λ(30) = 0.5, λ(12) = 0.5 =⇒ x1 = 2, x2 = 1, z = −7

Pruned by integrality

Figure 4.5: Non-robust BCPA tree

that point. Using (4.12c) again, it can be translated to an equivalent inequality

∑
q∈Q

∑
j∈[n]

αjqj

λq ≥ α0 (4.15)

over the λ variables. As also happens with constraints directly defined over the λ

variables, this new constraint will also introduce a new dual variable to the MLP.

However, we have here a very particular case. By comparing (4.15) and (4.13),

we see that α(q) is given by the linear function
∑

j∈[n] αjqj . This means that the

additional term in (4.14a) will be linear and can be easily incorporated into the

first term (the dual variable of the new cut is included in the π vector and the α

coefficients are included as an additional row in matrix A). Everything happens as

if αx ≥ α0 was part of the original IP and kept in the master. So, there is no change

in the pricing structure and the cut is robust.

The procedure will be also illustrated in our example. Let x∗ = 37/54 ( 3 0 ) +

17/54 ( 1 2 ) = ( 2.37 0.63 ) be the fractional solution after the first CGA conver-

gence. Suppose that the cutting plane 2x1− 3x2 ≤ 1 is somehow (perhaps from the

structure of the original IP) separated. The corresponding RMLP would become:

zRM = min + 99a1 − 18λ1 + 4λ2

s.t. − 45λ1 − 5λ2 ≤ 4

21λ1 − 33λ2 ≤ 4

2x1 − 3x2 ≤ 1 � a1 + 6λ1 − 4λ2 ≥ 1

λ1 + λ2 ≤ 1

a1, λ1, λ2 ≥ 0.

By solving it, we get zRM = −7. The primal solution is λ1 = λ2 = 0.5 and the dual
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solution is π∗ = ( 0 0 − 2.2 ) and ν∗ = −4.8. Now we have a new dual variable π3,

corresponding to the added cutting plane. The subproblem becomes:

c = min

(−6 5 )− π∗

−15 5

7 −20
2 −3


x− ν∗

= (−6 + 15π∗
1 − 7π∗

2 − 2π∗
3)x1 + (5− 7π∗

1 + 20π∗
2 + 3π∗

3)x2 − ν

s.t. x ∈ Int(P ).

So, the first pricing IP after the cut becomes c∗ = min−1.6x1−1.6x2+4.8, subject to

x ∈ Int(P ). One of its optimal solutions is x∗ = ( 1 2 ), with c∗ = 0. Therefore, the

current RMLP solves the Master LP. The solution x∗ = 0.5 ( 3 0 )+0.5 ( 1 2 ) = ( 2 1 )

is integer, so the problem is solved at the root node, without need for branching.

We depict this BCPA tree in Figure 4.6. There is a single node S1, but S1.1 is

the original linear relaxation, solved by the CGA, and S1.2 is the improved linear

relaxation after cutting plane 2x1 − 3x2 ≤ 1 is added, also solved by the CGA.

S1.1 : λ(30) = 0.69, λ(12) = 0.31 =⇒ x1 = 2.37, x2 = 0.63, z = −11.07

Separate robust cut 2x1 − 3x2 ≤ 1

S1.2 : λ(30) = 0.5, λ(12) = 0.5 =⇒ x1 = 2, x2 = 1, z = −7

Pruned by integrality

Figure 4.6: Robust BCPA tree

Cutting over the original variables can be done without changing the structure of

the pricing. Therefore, a BCPA that only uses such kind of cuts and only performs

robust branching is robust. Again, given the big potential problems with the pricing

caused by non-robust cuts, the reader may be wondering why one would ever want

to design a BCPA algorithm that uses non-robust cuts.

• When the original IP formulation is highly symmetrical and, in particular,

the case where the DW reformulation produces U identical subproblems, cut-

ting planes over the original x variables are essentially useless. Such a cutting

plane will only make a fractional solution x∗ = (x1∗ . . . xU∗) shift (by only

permuting some of its u indices) to another fractional solution with the same
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cost. A very large number of cuts may be needed to cut all symmetric frac-

tional solutions. There are cases where robust cuts defined over asymmetric

aggregated original variables can be effective. However, there are also cases

where it is not possible or effective to cut over those aggregate variables.

• There are cases where robust cuts over the original variables (or their asym-

metric aggregations) are effective and lead to small gaps. However, non-robust

cuts over the generated λ variables can be even more effective and, if the

changes in the pricing can be somehow handled, may lead to really smaller

gaps. In fact, the most advanced state-of-the-art BCPAs are exactly those

where the non-robust cuts and the pricing algorithm are jointly and symbiotically

designed, in such a way that the pricing can handle a large number of very

tailored non-robust cuts without becoming too inefficient.

4.4. Three Examples
We provide three examples of classic LCOPs where BPAs or BCPAs can work very

well.

4.4.1. The Generalized Assignment Problem
Definition 4.3: Generalized Assignment Problem (GAP). Instance: J jobs

and K machines; integer capacities Wk, k ∈ [K]; assignment costs ckj and integer

loads wk
j , j ∈ [J ], k ∈ [K]. Solutions: assignments of jobs to machines such that

the total load in each machine does not exceed its capacity. Goal: minimize total

assignment cost.

The natural formulation for GAP uses binary variables xkj to indicate that job
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j is assigned to machine k:

zIP = min
∑
k∈[K]

∑
j∈[J ]

ckjx
k
j (4.16a)

s.t.
∑
k∈[K]

xkj = 1 j ∈ [J ] (4.16b)

∑
j∈[J ]

wk
j x

k
j ≤Wk k ∈ [K] (4.16c)

0 ≤ xkj ≤ 1 j ∈ [J ], k ∈ [K] (4.16d)

x ∈ ZJK . (4.16e)

A stronger formulation may be produced by applying the Dantzig-Wolfe reformu-

lation. By keeping (4.16b) in the Master, the remaining constraints decompose into

K independent sets of constraints. For each k ∈ [K], P k is:∑
j∈[J ]

wk
j x

k
j ≤Wk (4.17a)

0 ≤ xk ≤ 1. (4.17b)

Let qj be the j-th component of a point q ∈ Int(P k) = Qk. The linear relaxation

of the reformulated IP (which is an SPP, see Note 3.9) yields the following Master

LP:

zM = min
∑
k∈[K]

∑
q∈Qk

∑
j∈[J ]

ckj qj

λk
q (4.18a)

s.t.
∑
k∈[K]

∑
q∈Qk

qjλ
k
q = 1 j ∈ [J ] (4.18b)

∑
q∈Qk

λk
q = 1 k ∈ [K] (4.18c)

λ ≥ 0. (4.18d)

The convexity constraints (4.18c) can be relaxed to ≤ because 0 belongs to all

sets Int(P k), k ∈ [K]. Let π = (π1, . . . , πJ) be the vector with the dual variables

associated to (4.18b) and ν = (ν1, . . . , νK) be the vector with the dual variables

associated to (4.18c). The pricing is performed by solving K subproblems, where
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subproblem k, k ∈ [K], is defined as:

ck∗ =min
∑
j∈[J ]

(ckj − π∗
j )x

k
j − ν∗k (4.19a)

s.t. xk ∈ Int(P k). (4.19b)

The pricing subproblems are instances of the classic binary knapsack problem,

which is (weakly) NP-hard but very well solved in practice (Note 4.6). That fact

makes the DW reformulation much interesting to GAP because it provides a practi-

cal way of implicitly obtaining all the facets of the knapsack polyhedra corresponding

to Conv(Int(P k)).

For example, consider the following GAP instance:

Cost (ckj ) Load (wk
j ) Wk

Jobs 1 2 3 4 1 2 3 4

Machines
1 8 3 2 9 2 3 3 1 5
2 1 7 5 2 5 1 1 3 8

Formulation (4.16) becomes:

zIP = min 8x1
1 + 3x1

2 + 2x1
3 + 9x1

4 + x2
1 + 7x2

2 + 5x2
3 + 2x2

4

s.t. x1
1 + x2

1 = 1

x1
2 + x2

2 = 1

x1
3 + x2

3 = 1

x1
4 + x2

4 = 1

2x1
1 + 3x1

2 + 3x1
3 + x1

4 ≤ 5

5x2
1 + x2

2 + x2
3 + 3x2

4 ≤ 8

x ∈ B8.

An optimal integer solution has x11 = x12 = x23 = x24 = 1 and the other variables at

0, with zIP = 18. However, its linear relaxation yields zLP = 9.69. Such a big gap

on a tiny instance indicates the standard BBA may need to explore many nodes for

solving some larger GAP instances.

We now show how this instance can be solved by a robust BCPA. Figure 4.7

shows the resolution process in detail. S1.1.1 corresponds to the first CGA iteration,

where the RMLP is initialized with four artificial variables having the value 99. The
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RMLP dual solution and the two subproblems are shown, both of them generate

columns with negative reduced cost. The CGA converges at iteration S1.1.6, so MLP

S1.1 yields the valid lower bound of 15 (a very significant gap reduction with respect

to the linear relaxation of the original IP). Still at the root node, the robust cutting

plane x21 + 2x12 + 2x13 + x24 ≤ 3 is separated (this facet-defining cut does not seem

to be part of a known family of GAP cuts, it was found computationally only for

the sake of illustrating the robust BCPA). The subsequent CGA (note that now π

has dimension 1× 5) converges already in the first iteration S1.2.1, so the new MLP

S1.2 yields the valid lower bound of 16.4. No other violated cut is found, so node S1

ends with z = 16.4. The optimal RMLP at the end of that root node is:

zRM = min 10λ1 + 13λ2 + 11λ3 + 7λ4 + 11λ5 + 3λ6 + 3λ7 + 14λ8 + 2λ9

s.t. λ1 + λ2 + λ5 + λ6 = 1

λ2 + λ5 λ7 + λ8 = 1

λ1 + λ2 + λ3 + λ4 + λ8 + λ9 = 1

λ3 + λ4 + λ6 + λ8 = 1

Cut � 2λ1 λ2 + 2λ3 + λ4 + 2λ5 + 2λ6 + 2λ7 + λ8 + 2λ9 ≤ 3

λ1 + λ3 + + λ5 + λ7 + λ9 ≤ 1

λ2 + λ4 + λ6 + λ8 + ≤ 1

λ ≥ 0.

Now, a branching over variable x13 is performed. In Node S2, corresponding to

branching x13 ≤ 0, the CGA (note that now π has dimension 1×6) converges in two

iterations to an integer solution with value 18. So, that node is pruned by integrality.

Assuming that some variables with larger positive reduced costs (λ2 and λ8) were

cleaned, i.e., removed from the RMLP, the optimal RMLP at the end of S2 is:

zRM = min 10λ1 + 11λ3 + 7λ4 + 11λ5 + 3λ6 + 3λ7 + 2λ9 + 6λ10

s.t. λ1 + λ5 + λ6 + λ10 = 1

λ5 + λ7 = 1

λ1 + λ3 + λ4 + λ9 + λ10 = 1

λ3 + λ4 + λ6 = 1

Cut � 2λ1 + 2λ3 + λ4 + 2λ5 + 2λ6 + 2λ7 + 2λ9 + λ10 ≤ 3

x1
3 ≤ 0 � λ1 + λ3 + λ9 ≤ 0

λ1 + λ3 + λ5 + λ7 + λ9 ≤ 1

λ4 + λ6 + λ10 ≤ 1

λ ≥ 0.

In Node S3, corresponding to branching x13 ≥ 1, the first iteration of the CGA
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starts by solving the following RMLP:

zRM = min 10λ1 + 13λ2 + 11λ3 + 7λ4 + 11λ5 + 3λ6 + 3λ7 + 14λ8 + 2λ9

s.t. λ1 + λ2 + λ5 + λ6 = 1

λ2 + λ5 + λ7 + λ8 = 1

λ1 + λ2 + λ3 + λ4 + λ8 + λ9 = 1

λ3 + λ4 + λ6 + λ8 = 1

Cut � 2λ1 + λ2 + 2λ3 + λ4 + 2λ5 + 2λ6 + 2λ7 + λ8 + 2λ9 ≤ 3

x1
3 ≥ 1 � λ1 + λ3 + λ9 ≥ 1

λ1 + λ3 + + λ5 + λ7 + λ9 ≤ 1

λ2 + λ4 + λ6 + λ8 ≤ 1

λ ≥ 0,

obtaining zRM = 24. The first subproblem obtains c1∗ = 0 and the second c2∗ = −5.
Using Theorem 2.8, we obtain a lower bound of 19 for the z value of S3. Therefore,

the CGA can be stopped and the node is pruned by bound.

We will now show how the GAP could be solved by a possible non-robust BCPA,

using only rank 1 Chvátal-Gomory Cuts (CGCs). We will apply the procedure

to Constraints (4.18b), relaxed to ≤. Let ρ ∈ R1×J
+ be a vector of non-negative

multipliers. The resulting CGC is:

∑
k∈[K]

∑
q∈Qk

∑
j∈[J ]

ρjqj

λk
q ≤

∑
j∈[J ]

ρj

 . (4.21)

The cut is non-robust because the floor function in its definition is non-linear. This

means that the pricing subproblems will change. Assume that at a given moment

during the BCPA there are L such rank 1 cuts, CGC l, l ∈ [L], having multipliers

ρl and dual variable σl. The pricing subproblem k, k ∈ [K], becomes:

ck∗ =min
∑
j∈[J ]

(ckj − π∗
j )x

k
j −

∑
l∈[L]

σ∗
l wl − ν∗k (4.22a)

s.t. xk ∈ Int(P k) (4.22b)

wl ≥
∑
j∈[J ]

ρljx
k
j − 1 + ϵ l ∈[L] (4.22c)

w ∈ ZL
+, (4.22d)

where ϵ is a small constant and wl, l ∈ [L], is an auxiliary integer variable devised to

138



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

S1.1.1 : zRM = 396, π∗ = (99 99 99 99), ν∗ = (0 0)
min−91x1

1 − 96x1
2 − 97x1

3 − 90x1
4 s.t. x1 ∈ Int(P 1) =⇒ x1∗ = (1 0 1 0), c1∗ = −188

min−97x2
1 − 92x2

2 − 94x2
3 − 97x2

4 s.t. x2 ∈ Int(P 2) =⇒ x2∗ = (1 1 1 0), c2∗ = −284
S1.1.2 : zRM = 112, π∗ = (0 3 10 99), ν∗ = (0 0)
min 8x1

1 − 8x1
3 − 90x1

4 s.t. x1 ∈ Int(P 1) =⇒ x1∗ = (0 0 1 1), c1∗ = −98
minx2

1 + 4x2
2 − 5x2

3 − 97x2
4 s.t. x2 ∈ Int(P 2) =⇒ x2∗ = (0 0 1 1), c2∗ = −102

S1.1.3 : zRM = 24, π∗ = (10 7 0 11), ν∗ = (0 − 4)
min−2x1

1 − 4x1
2 + 2x1

3 − 2x1
4 s.t. x1 ∈ Int(P 1) =⇒ x1∗ = (1 1 0 0), c1∗ = −6

min−9x2
1 + 5x2

3 − 9x2
4 + 4 s.t. x2 ∈ Int(P 2) =⇒ x2∗ = (1 0 0 1), c2∗ = −14

S1.1.4 : zRM = 18, π∗ = (2 9 6 5), ν∗ = (0 − 4)
min 6x1

1 − 6x1
2 − 4x1

3 + 4x1
4 s.t. x1 ∈ Int(P 1) =⇒ x1∗ = (0 1 0 0), c1∗ = −6

min−x2
1 − 2x2

2 − x2
3 − 3x2

4 + 4 s.t. x2 ∈ Int(P 2) =⇒ x2∗ = (0 1 1 1), c2∗ = −2
S1.1.5 : zRM = 15, π∗ = (5 7 9 6), ν∗ = (−4 − 8)
min 3x1

1 − 4x1
2 − 7x1

3 + 3x1
4 + 4 s.t. x1 ∈ Int(P 1) =⇒ x1∗ = (0 0 1 0), c1∗ = −3

min−4x2
1 − 4x2

3 − 4x2
4 + 8 s.t. x2 ∈ Int(P 2) =⇒ c2∗ = 0

S1.1.6 : zRM = 15, π∗ = (8 10 9 9), ν∗ = (−7 − 14)
min−7x1

2 − 7x1
3 + 7 s.t. x1 ∈ Int(P 1) =⇒ c1∗ = 0

min−7x2
1 − 3x2

2 − 4x2
3 − 7x2

4 + 14 s.t. x2 ∈ Int(P 2) =⇒ c2∗ = 0
S1.1 : λ1

(1010)
= λ1

(0100)
= λ2

(1001)
= λ2

(0111)
= 0.5 =⇒ x1

1 = x2
1 = x1

2 = x2
2 = x1

3 = x2
3 = 0.5, x2

4 = 1,

z = 15
Separate robust cut x2

1 + 2x1
2 + 2x1

3 + x2
4 ≤ 3

S1.2.1 : zRM = 16.4, π∗ = (8 8.6 7.6 9 − 2.8), ν∗ = (0 − 8.4)
min0x1 s.t. x1 ∈ Int(P 1) =⇒ c1∗ = 0
min−4.2x2

1 − 1.6x2
2 − 2.6x2

3 − 4.2x2
4 + 8.4 s.t. x2 ∈ Int(P 2) =⇒ c2∗ = 0

S1.2 : λ2
(0111)

= 0.6, λ1
(1010)

= λ2
(1001)

= 0.4, λ1
(1100)

= λ1
(0100)

= 0.2 =⇒ x1
1 = 0.6, x2

1 = 0.4, x1
2 =

0.4, x2
2 = 0.6, x1

3 = 0.4, x2
3 = 0.6, x2

4 = 1, z = 16.4

S2.1.1 : zRM = 18, π∗ = (8 3 12 5 0 − 10), ν∗ =
(0 − 10)
min 4x1

4 s.t. x1 ∈ Int(P 1) =⇒ c1∗ = 0
min−7x2

1+ 4x2
2− 7x2

3− 3x2
4+10 s.t. x2∈Int(P 2)

=⇒ x2∗ = (1 0 1 0), c2∗ = −4
S2.1.2 : zRM = 18, π∗ = (8 3 12 9 0 − 10), ν∗ =
(0 − 14)
min0x1 s.t. x1 ∈ Int(P 1) =⇒ c1∗ = 0
min−7x2

1+ 4x2
2− 7x2

3− 7x2
4+14 s.t. x2∈Int(P 2)

=⇒ c2∗ = 0
S2.1 : λ1

(1100)
= λ2

(0011)
= 1

=⇒ x1
1 = x1

2 = x2
3 = x2

4 = 1, z = 18

Pruned by integrality

S3.1.1 : zRM = 24, π∗ = (8 13.66 0 9 −
5.33 12.66), ν∗ = (0 − 3.33)
min0x1 s.t. x1 ∈ Int(P 1)

=⇒ c1∗ = 0
min−1.67x2

1−6.67x2
2+5x2

3−1.63x2
4+3.33 s.t. x2∈

Int(P 2)
=⇒ x2∗ = (0 1 0 1), c2∗ = −5

S3.1 : z ≥ 19 (by Theorem 2.8)

Pruned by bound

x1
3 ≤ 0 x1

3 ≥ 1

Figure 4.7: Robust BCPA tree for the GAP instance

assume the value ⌊
∑

j∈[J ] ρ
l
jx

k
j ⌋. The linearization trick works because it is known

that σ ≤ 0 (the dual variable of a ≤ constraint in a minimization problem is

always non-positive). Anyway, those pricing subproblems can not be solved by highly

efficient black-box knapsack codes. While it may be possible to adapt one of those

codes for handling the new pricing subproblems, a more practical approach would

be to solve them using a much less efficient general MIP solver. Anyway, even with
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the best possible adapted codes, each added CGC is likely to make those pricing

subproblems harder. So, the algorithm designer should be very careful in separating

such cuts, in order to avoid intractable pricing.

In our example, the non-robust BCPA would work as depicted in Figure 4.8.

The first CGA convergence is identical to the robust BCPA, so S1.1 yields the valid

lower bound of 15. The multipliers of a CGC for cutting the fractional solution of

S1.1 are ρ1 = ( 2/3 1/3 1/3 1/3 ). It can be seen that variables λ1
(1010), λ

2
(1001),

and λ2
(0111) will have coefficient 1 in (4.21), while the RHS is also 1. So, the cut is

violated by 0.5 units. S1.2 gets another fractional solution with value 15. Then a

second CGC with ρ2 = ( 1/3 1/3 1/3 2/3 ) can be separated. Now, S1.3 finds an

integer solution with value 18 and the BCPA finishes at the root node. The last

RMLP is:

zRM = min 10λ1 + 13λ2 + 11λ3 + 7λ4 + 11λ5 + 3λ6 + 3λ7 + 14λ8 + 2λ9

s.t. λ1 + λ2 + λ5 + λ6 = 1

λ2 + λ5 λ7 + λ8 = 1

λ1 + λ2 + λ3 + λ4 + λ8 + λ9 = 1

λ3 + λ4 + λ6 + λ8 = 1

CG cut 1 � λ1 + λ2 + λ5 + λ6 + λ8 ≤ 1

CG cut 2 � λ2 + λ3 + λ4 + λ6 + λ8 ≤ 1

λ1 + λ3 + + λ5 + λ7 + λ9 ≤ 1

λ2 + λ4 + λ6 + λ8 + ≤ 1

λ ≥ 0.

4.4.2. The Cutting Stock Problem
Definition 4.4: Cutting Stock Problem (CSP). Instance: J items, integer

lengths wj and demands (required number of copies) dj , j ∈ [J ]; integer stock

length W . Solutions: a way of cutting the stocks that produces the demand for each

item. Goal: minimize the number of used stocks.

The CSP, including the following very important particular case, is one of the

most widely studied COPs.

Definition 4.5: Bin Packing Problem (BPP). The BPP is the particular case

of the CSP where all demands are unitary.
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S1.1 : λ1
(1010)

= λ1
(0100)

= λ2
(1001)

= λ2
(0111)

= 0.5 =⇒ z = 15

Separate CGC with ρ1 = ( 2/3 1/3 1/3 1/3 )
S1.2.1 : zRM = 15, π∗ = (8 10 9 9), σ∗ = (−3), ν∗ = (−7 − 11)
min−7x1

2 − 7x1
3 + 3w1 + 7

s.t. x1 ∈ Int(P 1),
2/3x1

1 + 1/3x1
2 + 1/3x1

3 + 1/3x1
4 − w1 ≤ 1− ϵ,

w1 ∈ Z+

=⇒ c1∗ = 0
min−7x2

1 − 3x2
2 − 4x2

3 − 7x2
4 + 3w1 + 11

s.t. x1 ∈ Int(P 1),
2/3x2

1 + 1/3x2
2 + 1/3x2

3 + 1/3x2
4 − w1 ≤ 1− ϵ,

w1 ∈ Z+

=⇒ c2∗ = 0
S1.2 : λ1

(0011)
= λ1

(0100)
= λ2

(1110)
= λ2

(1001)
= 0.5, z = 15

Separate CGC with ρ2 = ( 1/3 1/3 1/3 2/3 )
S1.3.1 : zRM = 18, π∗ = (14 13 12 15), σ∗ = (−6 − 6), ν∗ = (−10 − 14)
min−6x1

1 − 10x1
2 − 6x1

3 − 10x1
4 + 6w1 + 6w2 + 10

s.t. x1 ∈ Int(P 1),
2/3x1

1 + 1/3x1
2 + 1/3x1

3 + 1/3x1
4 − w1 ≤ 1− ϵ,

1/3x1
1 + 1/3x1

2 + 1/3x1
3 + 2/3x1

4 − w2 ≤ 1− ϵ,
w ∈ Z2

+

=⇒ c1∗ = 0
min−13x2

1 − 6x2
2 − 7x2

3 − 13x2
4 + 6w1 + 6w2 + 14

s.t. x1 ∈ Int(P 1),
2/3x2

1 + 1/3x2
2 + 1/3x2

3 + 1/3x2
4 − w1 ≤ 1− ϵ,

1/3x2
1 + 1/3x2

2 + 1/3x2
3 + 2/3x2

4 − w2 ≤ 1− ϵ,
w ∈ Z2

+

=⇒ c2∗ = 0
S1.3 : λ1

(1100)
= λ2

(0011)
= 1 =⇒ x1

1 = x1
2 = x2

3 = x2
4 = 1, z = 18

Pruned by integrality

Figure 4.8: Non Robust BCPA tree for the GAP instance

The CSP can be formulated as follows. Let U be an upper bound on the number

of stocks that need to be cut. This bound can be produced by any heuristic method

for the CSP. Then, let binary variable yu, u ∈ [U ], indicate whether stock u is indeed

used. Integer variables xuj , j ∈ [J ], u ∈ [U ], represent the number of copies of item

141



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

j that will be cut from stock u. The formulation is:

zIP = min
∑
u∈[U ]

yu (4.23a)

s.t.
∑
u∈[U ]

xuj = dj j ∈ [J ] (4.23b)

∑
j∈[J ]

wjx
u
j ≤Wyu u ∈ [U ] (4.23c)

xuj ≥ 0 j ∈ [J ], u ∈ [U ] (4.23d)

0 ≤ yu ≤ 1 u ∈ [U ] (4.23e)

(x,y) ∈ ZJ(U+1). (4.23f)

This formulation (wrongly attributed to Kantorovich [1939] in the last decades, see

Note 4.9) is really bad. First, its linear relaxation always yields zLP =
∑

j∈[J ]wjdj/W ,

which is an obvious lower bound for the CSP. Second, its extreme symmetry makes

branching and cutting over it extremely ineffective. Third, it is not even polynomially-

sized, since there are classes of instances where U grows exponentially with the

instance size. For example, it suffices to increase the item demands while keeping

the remaining data fixed in order to obtain such a class. However, a much better

formulation may be obtained by applying the Dantzig-Wolfe reformulation to it. By

keeping (4.23b) in the Master, the remaining constraints decompose into U indepen-

dent sets. As those sets define identical subproblems, all P u, u ∈ [U ], are equivalent

to the following polyhedron P : ∑
j∈[J ]

wjxj ≤Wy (4.24a)

x ≥ 0 (4.24b)

0 ≤ y ≤ 1 (4.24c)

The point 0 belongs to Int(P ) and corresponds to (x = 0, y = 0). Any other point

q ∈ Int(P ) has component qJ+1 = 1, corresponding to solutions with y = 1. Let

Q = Int(P ) \ 0. As we are in the case that all subproblems are identical (K = 1,

see Section 2.3.2), the linear relaxation of the reformulated IP yields the following
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Master LP:

zM = min
∑
q∈Q

λq (4.25a)

s.t.
∑
q∈Q

qjλq = dj j ∈ [J ] (4.25b)

∑
q∈Q

λq + λ0 = U (4.25c)

λ ≥ 0. (4.25d)

Note that variable λ0, which only appears in (4.25c), can be viewed as the slack of

an equivalent constraint
∑

q∈Q λq ≤ U . As U is an upper bound on the quantity∑
q∈Q λq that is being minimized, that convexity constraint is redundant and can be

removed. So, let π = (π1, . . . , πJ) be the vector with the dual variables associated to

(4.25b). By noticing that all the generated variables correspond to points in Int(P )

such that y = 1, the pricing step in the CGA is performed by solving the following

subproblem:

c∗ = min 1−
∑
j∈[J ]

π∗
jxj (4.26a)

s.t.
∑
j∈[J ]

wjxj ≤W (4.26b)

x ∈ ZJ
+. (4.26c)

The pricing subproblems are instances of the classic integer knapsack problem,

which is also (weakly) NP-hard and also very well solved in practice (Note 4.6).

The reformulated IP for CSP corresponds to its classic formulation by Kantorovich

[1939] (see Note 4.9) and by Gilmore and Gomory [1961]. The solutions of (4.26)

correspond to the cutting patterns, i.e., the possible ways of cutting a stock. As the

same cutting pattern can be used more than once, λ variables can assume values

greater than 1.

For example, consider the following CSP instance: J = 4, w = ( 40 35 31 13 ),

d = ( 4 5 5 8 ), and W = 100. Formulation (4.23), no matter which heuristic upper

bound U is used, would get zLP = 594/100. As zIP is known to be integer, rounding

zLP up obtains the valid lower bound of 6. In order to solve (4.25), we initialize the

RMLP with the 4 cutting patterns produced by cutting the maximum number of
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identical items from a stock. The CGA sequence is depicted in Figure 4.9. The final

optimal RMLP is:

zRM = min λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8

s.t. 2λ1 +2λ6 = 4

2λ2 +2λ5 + λ7 + λ8 = 5

3λ3 +2λ8 = 5

7λ4 +2λ5 + λ6 +5λ7 = 8

λ ≥ 0,

with λ1 = λ2 = λ3 = λ4 = 0, λ5 = 0.81, λ6 = 2, λ7 = 0.88, λ8 = 2.5, and

zRM = zM = 6.19. By rounding up the MLP value, an improved lower bound of

7 is got. As proposed in Gilmore and Gomory [1961], a good heuristic solution for

the CSP can be found by simply rounding up the fractional solution itself. In our

example, we would make λ5 = 1, λ6 = 2, λ7 = 1, λ8 = 3, and then trim the copies of

some items that exceed their demands. The resulting proven optimal integer solution

with value 7 is depicted in Figure 4.10. By incorporating that primal heuristic

procedure, the BPA finishes at the root node in that example. Two potentially

better ways of “rounding” the final RMLP are: (1) relaxing its demand constraints

to ≥ (allowing overproducing some items) and solving it as an IP; (2) iteratively

fixing a single fractional variable λq′ to ⌈λq′⌉ and resolving the residual problem

(as in (4.10)) by the CGA (the diving heuristic fully described in Chapter 6). It is

also convenient to relax the demand constraints to ≥ in order to avoid the risk of

infeasibility.

The Kantorovich-Gilmore-Gomory formulation for the CSP is remarkably strong.

The existence of Non Integer Round Up (NIRUP) instances, those where its linear

relaxation rounded up does not match the optimal integer solution, was only proved

in Marcotte [1985]. Even today, the following conjecture is still open:

Conjecture 4.1: The lower bound from the linear relaxation of the Kantorovich-

Gilmore-Gomory formulation rounded up is at most one unit away from the CSP

optimal integer solution.

NIRUP instances are rare [Kartak et al., 2015]. So, a BPA for the CSP is often

reduced to a diving heuristic (Chapter 6) for finding one of the (usually many)

integer solutions that match the optimal lower bound already found in the root
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S1.1.1 : zRM = 7.3095, π∗ = (0.5 0.5 0.3333 0.1429)
min 1− 0.5x1 − 0.5x2 − 0.3333x3 − 0.1429x4 s.t. x ∈ X =⇒ x∗ = (0 2 0 2), c∗ = −0.2857
S1.1.2 : zRM = 6.5952, π∗ = (0.5 0.3571 0.3333 0.1429)
min 1− 0.5x1 − 0.3571x2 − 0.3333x3 − 0.1429x4 s.t. x ∈ X =⇒ x∗ = (2 0 0 1), c∗ = −0.1429
S1.1.3 : zRM = 6.3095, π∗ = (0.4286 0.3571 0.3333 0.1429)
min 1− 0.4286x1 − 0.3571x2 − 0.3333x3 − 0.1429x4 s.t. x ∈ X =⇒ x∗ = (0 1 0 5), c∗ = −0.0714
S1.1.4 : zRM = 6.2917, π∗ = (0.4375 0.375 0.3333 0.125)
min 1− 0.4375x1 − 0.375x2 − 0.3333x3 − 0.125x4 s.t. x ∈ X =⇒ x∗ = (0 1 2 0), c∗ = −0.0417
S1.1.5 : zRM = 6.1875, π∗ = (0.4375 0.375 0.3125 0.125)
min 1− 0.4375x1 − 0.375x2 − 0.3125x3 − 0.125x4 s.t. x ∈ X =⇒ c∗ = 0
S1.1 : λ(0202) = 0.8125, λ(2001) = 2, λ(0105) = 0.875, λ(0120) = 2.5, z = 6.1875
Round up fractional solution, obtaining UB = 7

Pruned by bound

Figure 4.9: BPA tree for the CSP example, X = {x ∈ Z4
+ : 40x1 + 35x2 + 31x3 +

13x4 ≤ 100}

λ5

{

λ6

{

λ7

{

λ8

{

Figure 4.10: Optimal CSP solution

node. However, there are instances where this may not work, either because they

are NIRUP or because finding an optimal integer solution is difficult. So, a BPA

algorithm should include a complete branching scheme. However, branching in a

BPA or BCPA for CSP (and for several other problems with similar characteristics)

is a quite complex matter, that will be presented in depth in Chapter 8. We will

mention now the following:

• Robust branching over the original variables (x,y) is useless because of their
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extreme symmetry. Moreover, it is also not possible to branch over the asym-

metric aggregated original variables
∑

k∈[K] x
k
j , j ∈ [J ], because they are al-

ways equal to the integer values dj . Branching over the asymmetric aggre-

gated original variable
∑

k∈[K] y
k, if it has a fractional value z∗, is possible

but not recommended. The node S2 corresponding to
∑

k∈[K] y
k ≤ ⌊z∗⌋ is

certainly infeasible and can be already pruned. The node S3 corresponding

to
∑

k∈[K] y
k ≥ ⌈z∗⌉ =

∑
q∈Q λq ≥ ⌈z∗⌉ (an objective value cut) would have

z = ⌈z∗⌉, a bound that was already known. The problem is that no robust

branching is now available for S3. Anyway, the objective value cut can have a

negative blinding effect on a BCPA (see Note 3.8).

4.4.3. The Capacitated Vehicle Routing Problem
The CVRP natural Formulation (3.6) is not well suited for DW reformulation. This

happens because no matter which sets of constraints are chosen to be kept in the

master, there will be no decomposition of the subproblem into multiple independent

subproblems.

The following extended formulation is more suited for DW reformulation. It is

actually a formulation for the more general Asymmetric CVRP (ACVRP), defined

over a graph GD = (V,A) where A contains a pair of opposite arcs (i, j) and (j, i)

for each edge e = {i, j} ∈ E. However, it can also be used for the CVRP by only

defining symmetric costs. The value U = |V+| is an upper bound on the number

of routes in any solution. For each a = (i, j) ∈ A and u ∈ [U ], let yua be a binary

variable indicating that route u includes the travel from i to j and let fu
a be a

continuous variable indicating the corresponding load of the vehicle (the sum of the

demands already collected in the route) during that travel, if yua = 1. If yua = 0,
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then fu
a = 0.

zIP = min
∑
u∈[U ]

∑
a∈a

cay
u
a (4.27a)

s.t.
∑
u∈[U ]

∑
a∈δ−(i)

yua = 1 i ∈ V+ (4.27b)

∑
a∈δ−(i)

yua −
∑

a∈δ+(i)

yua = 0 i ∈ V, u ∈ [U ] (4.27c)

∑
a∈δ−(i)

yua ≤ 1 i ∈ V, u ∈ [U ] (4.27d)

∑
a∈δ−(i)

fu
a −

∑
a∈δ+(i)

fu
a = − di

∑
a∈δ−(i)

yua i ∈ V+, u ∈ [U ] (4.27e)

fu
a =0 a ∈ δ+(0), u ∈ [U ] (4.27f)

fu
a ≤Wyua a ∈ A, u ∈ [U ] (4.27g)

(y,f) ∈Z|A|U
+ × R|A|U

+ . (4.27h)

By keeping (4.27b) in the master, the remaining constraints decompose into U

independent sets of constraints. As those sets define identical subproblems, all P u,

u ∈ [U ], are equivalent to the following polyhedron P :∑
a∈δ−(i)

ya−
∑

a∈δ+(i)

ya = 0 i ∈ V (4.28a)

∑
a∈δ−(i)

ya ≤ 1 i ∈ V (4.28b)

∑
a∈δ−(i)

fa −
∑

a∈δ+(i)

fa = − di
∑

a∈δ−(i)

ya i ∈ V+ (4.28c)

fa = 0 a ∈ δ+(0) (4.28d)

fa ≤Wya a ∈ A (4.28e)

(y,f) ∈R|A|
+ × R|A|

+ . (4.28f)

Extended formulation (4.27) is in format (4.8), but with h = 0 and D = 0, since the

continuous variables f do not appear neither in (4.27a) nor in (4.28a). Therefore,

the columns in the resulting Master LP will only depend on the y part of the points

(y,f) ∈ P . In fact, the relevant set of points is Q = Projy({(y,f) ∈ P, y ∈ Z|A|}),
i.e., the set of all possible individual CVRP routes, each route being represented
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as the incidence vector of its set of arcs. Note that constraints (4.28a) and (4.28b)

alone force any binary y to define a set of vertex-disjoint cycles. The remaining

constraints in (4.28) eliminate all cycles that do not contain the depot and also

enforce the vehicle capacity on the single cycle that passes by the depot. Actually,

the point 0, representing the empty route, is also a valid solution. As we are in

the case that all subproblems are identical (K = 1, see Section 2.3.2), the linear

relaxation of the reformulated IP yields the following Master LP:

zM = min
∑
q∈Q

(∑
a∈a

caqa

)
λq (4.29a)

s.t.
∑
q∈Q

( ∑
a∈δ−(i)

qa

)
λq = 1 i ∈ V+ (4.29b)

∑
q∈Q

λq ≤ U (4.29c)

λ ≥ 0. (4.29d)

As U = |V+|, the convexity constraint (4.29c) is redundant and can be removed,

so, the reformulated IP is an SPP. Let π = (π1, . . . , π|V+|) be the vector with the

dual variables associated to (4.29b). The pricing step in the CGA is performed by

solving the following subproblem:

min c =
∑

a=(i,j)∈A

(ca − π∗
j )ya (4.30a)

s.t. y ∈ Q. (4.30b)

The pricing subproblem corresponds to the following LCOP:

Definition 4.6: Capacitated Minimum Cost Elementary Cycle. Instance:

Directed graph GD = (V,A), where V = {0} ∪ V+, vertex 0 represents a depot and

V+ the set of customers; arc costs c̄a, a ∈ A (unrestricted in sign); integer positive

demands di, i ∈ V+; and integer vehicle capacity W . Solutions: routes in G starting

and ending at the depot and such that the sum of the demands of the customers in

it does not exceed W . Goal: minimize the sum of the cost of the arcs in the route.

Here there is a problem. The above LCOP is strongly NP-hard and may also

be quite hard in practice. The solution almost always adopted in practice is to re-
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lax the vertex elementarity in the definition of the subproblem. This means that

instead of pricing actual routes, one can price q-routes: walks starting and ending

at the depot respecting the capacity constraint [Christofides et al., 1981]. A cus-

tomer vertex i may be visited more than once, but each visit consumes di units of

capacity. Therefore, the number of q-routes is finite. Pricing q-routes can be done in

pseudopolynomial O(W |A|) time by DP. In fact, pricing q-routes without 2-cycles

(subcycles of format i − j − i) can be done by only doubling the number of states

in the DP, so the complexity remains O(W |A|). Is that relaxation valid in a BPA

for the CVRP? Yes, because the coefficient of a q-route variable in the constraint in

(4.29b) corresponding to customer i is equal to the number of times that it visited

i. If that coefficient is greater than 1, then the variable should have value zero in

any integer solution (variables like that are called non-proper, see Note 4.4). There-

fore, the formulation remains valid. However, the additional q-route variables may

have a positive value in a fractional solution, weakening the formulation. Yet, the q-

route formulation is still significantly stronger than the original Formulation (4.27).

Stronger route relaxations include q-routes without s-cycles for s ≥ 3 [Irnich and

Villeneuve, 2006] and ng-routes [Baldacci et al., 2011].

Effective robust cutting and branching can be performed over the asymmetric

aggregated original variables ya =
∑

u∈[U ] y
u
a , a ∈ A. Those variables are binary and

have value 1 if the arc a is used in some route. However, if the CVRP instance is

defined over an undirected graph G = (V,E), it is recommended to cut and branch

over the more aggregated variables xe = yij + yji, e = {i, j} ∈ E, in order to avoid

another symmetry (the same undirected route can be represented in two different

ways over the directed variables). Those x variables are exactly those in Formulation

(3.6). Rounded Capacity Cuts (3.6c) and any other cuts known for that formulation

can be used in a robust BCPA. Constraints (4.29b) define a set-partitioning problem.

Non-robust cuts valid for it can be used in a non-robust BCPA. Of course, one should

be very careful not to make the pricing intractable (see Chapter 10).

4.5. Nuances of Robustness
Branchings and cuts defined over the original formulation variables are robust since

the new dual variables from the introduced constraints only affect the objective

function in the pricing subproblems, ensuring that their structure remains unaltered.
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Yet, this is not the full history. There are more subtle cases that will be illustrated

with three examples.

4.5.1. Graph Coloring Problem: robustness

“by luck”
Consider the following classic NP-hard problem.

Definition 4.7: Graph Coloring Problem (GCP). Instance: undirected graph

G = (V,E). Solutions: the vertex-colorings of G, i.e., mappings f : V 7→ Z≥1 (colors

are represented by positive integers) such that for every edge {i, j} ∈ E, f(i) ̸= f(j).

Goal: Minimize the number of distinct colors used.

Let U be an upper bound on the minimum number of colors, obtained by any

heuristic. Let yu, u ∈ [U ], be a binary variable indicating whether color u is used

and let xui , i ∈ V , u ∈ [U ], be a binary variable indicating whether vertex i receives

color u. A GCP formulation is:

zIP = min
∑
u∈[U ]

yu (4.31a)

s.t.
∑
u∈[U ]

xui = 1 i ∈ V (4.31b)

xui ≤ yu i ∈ V, u ∈ [U ] (4.31c)

xui + xuj ≤ 1 {i, j} ∈ E, u ∈ [U ] (4.31d)

(x,y) ∈ B|V |(U+1). (4.31e)

The above formulation is big and suffers from symmetry, but its DW decomposi-

tion (keeping (4.31b) in the master and doing some simplifications) can yield the

SPP formulation used in Mehrotra and Trick [1996], where the variables corre-

spond to the independent sets of G. An independent set (a.k.a. stable set) is a

vertex-set V ′ ⊆ V such that no pair of vertices in it is connected by an edge. Ver-

tices in an independent set can always receive the same color. Let Q = {χ(V ′) :

V ′ is an independent set of G}, so qi indicates whether vertex i belongs to the in-
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dependent set corresponding to q ∈ Q. The formulation is:

min
∑
q∈Q

λq (4.32a)

s.t.
∑
q∈Q

qiλq = 1 i ∈ V (4.32b)

λ ∈ Z|Q|
+ . (4.32c)

Its linear relaxation can be solved by the CGA, the pricing subproblem being the

following LCOP:

Definition 4.8: Independent Set Problem (ISP), a.k.a. Stable Set Prob-

lem. Instance: undirected graph G = (V,E), weights wi, i ∈ V . Solutions: sets

V ′ ⊆ V such that for every edge e = {u, v} ∈ E, |V ′ ∩ e| ≤ 1. Goal: Maximize∑
i∈V ′ wi.

The dual variables π associated to (4.32b) provide the weights. If a solution V ′ is

such that 1−
∑

i∈V ′ π∗
i < 0, then a column with negative reduced cost is found. The

ISP is closely related to the Vertex Cover Problem (Definition 3.5): a set V ′ is an

independent set if and only if its complement V \V ′ is a vertex cover (for example, in

Figure 3.3, {4, 6} is an independent set and {1, 2, 3, 5} is a vertex cover). Therefore,

it is also NP-hard. Yet, there are algorithms with a good practical performance for

many instances with up to a few hundred vertices (Note 4.7).

In order to obtain integer solutions in their proposed BPA, Mehrotra and Trick

used the branching scheme introduced in Ryan and Foster [1981] for the SPP (see

Note 3.11). In this context, one should branch by choosing a pair of vertices i, j ∈
V such that the linear expression

∑
q∈Q : qi+qj=2 λ

∗
q is fractional (as the RFB is

complete, if no such pair exists then λ∗ should be integer):

• In the left node i and j should be in the same independent set, i.e, have the

same color. This is imposed by removing from the RMLP columns correspond-

ing to vectors q such that qi + qj = 1 and forbidding the generation of new

columns with that feature. By merging vertices i and j into a single vertex (if

this operation produces parallel edges, a single copy of those edges is kept),

a new graph G′ is produced. The independent sets priced over G′ will either

contain the merged vertex (leading to a column containing both i and j) or not

(getting a column that does not contain both i and j). Note that the weight
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of the merged vertex in the resulting pricing subproblems is given by π∗
i +π∗

j .

In fact, it is possible to have a small gain in performance, at the cost of more

bookkeeping in the BPA code, by also merging the rows corresponding to i

and j to a single row in the RMLP.

• In the right node i and j should be in different independent sets, i.e, have

distinct colors. This is imposed by removing from the RMLP columns corre-

sponding to vectors q such that qi + qj = 2 and forbidding the generation of

new columns with that feature. This is done by including the new edge {i, j}
into E, producing a new graph G′. The independent sets priced over G′ will

not contain both i and j.

We have here an example of a robust BPA where the branching is performed over

(a linear expression on) the generated λ variables. In fact, the pricing can still be

performed by a black-box ISP code in both children nodes. “By luck”, the mod-

ifications in the pricing induced by the branching can be done by only changing

the input graph given to that ISP solver. There are no changes in the subproblem

structure and pricing is not likely to become slower even after many branchings are

performed.

4.5.2. BPP: robustness depends on how

subproblems are defined
Given that many other problems where CG is applied also have an SPP structure,

it would be good if RFB could always be applied in a robust way. The issue is not

so simple. For example, consider the BPA for the Bin Packing Problem presented in

Vance et al. [1994], which used RFB. In that context, it means selecting items i and

j in [J ] and branching on the disjunction that either i and j are packed in the same

bin or in distinct bins. Indeed, the first possibility is easily imposed by merging i

and j to a super item with length wi +wj , so, the priced columns either pack i and

j together or do not pack i or j. The resulting pricing subproblem is still a binary

KP problem. However, in the other child node, it is necessary to change the pricing

subproblem by including the constraint that it is not possible to include both i and

j in a solution. Up to a point, as long as the pairs of items that can not be together

are not overlapping, the modified pricing subproblem could still be efficiently solved
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in pseudo-polynomial time, as a Multiple Choice KP (Note 4.12). However, if too

many branchings are needed, overlaps start to appear, and the pricing has to be

done by a much less efficient general MIP solver. The strategy proposed by Vance

et al. [1994] was to explore the “fast-pricing nodes” in the BPA tree first, hoping to

quickly find an optimal integer solution and never having to really solve the “slow-

MIP-pricing nodes”. In fact, on IRUP instances, when an optimal solution is found,

the procedure in line 11 of Algorithm 1 immediately prunes all open nodes, and the

BPA ends.

Nowadays, we would implement that BPA in a slightly different way. The so-

called Knapsack Problem with Conflicts (KPC), which can be used for solving the

pricing subproblem after an arbitrary number of Ryan-Foster branching, started to

be studied in Yamada et al. [2002]. In spite of being a strongly NP-hard problem,

now there are quite efficient combinatorial algorithms for it. In particular, the codes

in Coniglio et al. [2021] are several orders of magnitude faster than general MIP

solvers. This means that RFB for the BPP is robust if it is assumed that, in the

worst case, the pricing will be solved as a KPC. More precisely, we would say that

the pricing is robust with respect to the KPC.

A reader may now argue that the above definition of robustness has a flaw:

almost everything would be robust with respect to a general MIP! For example, as

shown in Section 4.3.1, there are tricks to model the modifications in the pricing

subproblems induced by Chvátal-Gomory Cuts of arbitrary rank over the generated

variables. Our answer is the following:

• Relatively few successful BPA/BCPAs perform pricing using MIP solvers. In

most cases, success depends on the use of specialized codes that can not han-

dle general non-robustness. But even when the pricing is solved by a MIP

solver, success relies on the fact those MIPs are well-solved in practice. The

MIP modifications required by non-robustness consistently make them harder,

the more non-robust branchings/cuts the worse. For example, the tricks for

handling general CGCs not only increase MIP size, they also make them much

weaker. A few dozen such cuts may already lead to intractability. So, branch-

ings/cuts that make pricing MIPs harder as still classified as non-robust.

The whole concept of robustness is intended to capture the following practical dis-

tinction. Robust branchings/cuts are robust in the sense that one may use them

without fearing that they will make the pricing intractable. On the other hand,
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non-robust branchings/cuts (which play a crucial role in the most advanced BCPAs)

are non-robust in the sense that one should be very careful in using them in order

to avoid intractability.

4.5.3. CSP: robustness depends on what one

considers as the original formulation
Valério de Carvalho [1998] proposed a strong flow formulation for the CSP having a

pseudo-polynomially large number of variables. Let G = (V,A) be a directed graph

having vertex-set V = {0, . . . ,W} and arc-set A = ∪j∈[J ]Aj ∪ A0 ∪ (W, 0), where

Aj = {(v − wj , v) |wj ≤ v ≤ W} and A0 = {(v − 1, v) | 1 ≤ u ≤ W}. Each path

from vertex 0 to vertex W corresponds to a cutting pattern, arcs in Aj are uses of

item j while arcs in A0 may correspond to waste. Figure 4.11 shows the graph G

for an instance with J = 2, w1 = 2, w2 = 3, and W = 5. Define a variable xa for

each a ∈ A. The formulation is:

min z = x(W,0) (4.33a)

s.t.
∑

a∈δ−(i)

xa −
∑

a∈δ+(i)

xa = 0 i ∈ V (4.33b)

∑
a∈Aj

xa = dj j ∈ [J ] (4.33c)

x ∈ Z|A|
+ . (4.33d)

The “return flow” variable x(W,0) counts many cutting patterns are used to satisfy

the demands. If there is an item j′ such that dj′ = 1 (so A0 = Aj′), the constraint in

(4.33c) corresponding to j′ should be relaxed to ≥. Formulation (4.33) is potentially

large, having O(JW ) variables. Moreover, it also suffers from symmetry, in the sense

that the same cutting pattern may correspond to many 0−W -paths. For example,

in Figure 4.11 it can be seen that there are three paths representing the pattern

that uses two copies of item 1. Symmetry makes branching or cutting over the

flow variables less effective. Several preprocessing techniques have been proposed

for removing many arcs (and even vertices) from G in order to decrease formulation

size and mitigate symmetry. Of course, there should remain at least one 0−W -path

representing each cutting pattern.
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0 1 2 3 4 5

Figure 4.11: Graph for Valério de Carvalho’s CSP formulation

The DW reformulation of (4.33) that keeps Constraints (4.33c) in the master

yields a subproblem with a network flow structure. By also performing a path+cycle

decomposition (see Section 2.5.2) and aggregating the variables that correspond to

the same cutting pattern, one obtains exactly the Kantorovitch-Gilmore-Gomory

formulation. By the way, as network flow problems have the integrality property,

Theorem 4.1 implies that Formulation (4.33) is equally strong as KGG formulation.

As already shown in Section 4.4.2, it is possible to solve the KGG linear relax-

ation with the CGA, using the excellent knapsack codes available (see Note 4.6).

However, if one considers (4.33) as the original formulation, it becomes possible to

perform robust branching/cutting over its arc flow variables, as long as the pricing

starts to be solved as a shortest 0−W -path problem over G. This may not be partic-

ularly effective because the preprocessing of the graph G usually fails to remove all

its symmetry. Anyway, the CSP example illustrates the main point of this section:

the same CG formulation can be interpreted as being derived from different original

formulations. Therefore, one can choose one of those original formulations to per-

form robust branching or cutting. However, that choice may restrict the algorithms

that can be used in the pricing.

4.6. Case Study: Software Clustering
The Software Clustering Problem is a classic software engineering problem [Parnas,

1972]. The maintenance of a large software has to be distributed to teams. The parts

attributed to each team should be as independent from each other as possible. Some

tools can produce from the source code a Modular Dependency Graph, which is a

connected graph G = (V,E) where the vertices correspond to software modules and

edges represent dependencies. Additionally, for each edge e = {i, j} ∈ E there is
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a positive value ce = cij measuring the degree of dependency between modules i

and j. A clustering is a partitioning of V into mutually disjoint non-empty clusters,

that will define the parts attributed to each team. Many criteria for evaluating

clusterings were proposed. The popular Turbo Modularization Quality (TurboMQ)

criterion [Mitchell, 2002] is the following. Given a cluster S ∈ V , S ̸= ∅, its Cluster
Factor is defined as:

CF (S) =

∑
e∈E(S) ce∑

e∈E(S) ce +
1
2

∑
e∈δ(S) ce

.

Note that 0 ≤ CF (S) < 1. Higher values of CF (S) indicate clusters with significant

internal dependencies compared to external ones. The goal is to find a clustering that

maximizes the sum of its cluster factors. The number of clusters in the partitioning

may be fixed or not. We assume the latter case.

Köhler et al. [2013] introduced MIP formulations for the above problem. This

task is not simple due to the TurboMQ criterion being a sum of fractional functions,

necessitating the use of linearization techniques. We present their best-performing

formulation. Let U be an upper bound on the number of clusters in an optimal

solution. Binary variables xui and tue indicate whether vertex i and edge e belong to

cluster u ∈ [U ], respectively. Continuous variables ru represent the cluster factor of

cluster u ∈ [U ]. Some clusters u might end up without any vertices, meaning that

they are not used in the solution. Those empty clusters should have ru = 0. A key

observation is that the clustering factor of a non-empty cluster u is:

ru =
2
∑

e∈E cet
u
e∑

{i,j}∈E cij(xui + xuj )
.

Define auxiliary variables sui to represent the product ruxui . The formulation follows:
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max z =
∑
u∈[U ]

ru (4.34a)

s.t.
∑
u∈[U ]

xui = 1 i ∈ V (4.34b)

tuij ≤ xui , t
u
ij ≤ xuj {i, j} ∈ E, u ∈ [U ] (4.34c)

tuij ≥ xui + xuj − 1 {i, j} ∈ E, u ∈ [U ] (4.34d)

ru ≤
∑
i∈V

xui u ∈ [U ] (4.34e)

sui ≤ ru, sui ≤ xui i ∈ V, u ∈ [U ] (4.34f)

sui ≥ ru + xui − 1 i ∈ V, u ∈ [U ] (4.34g)∑
{i,j}∈E

cij(s
u
i + suj ) = 2

∑
e∈E

cet
u
e u ∈ [U ] (4.34h)

0 ≤ ru ≤ 1 u ∈ [U ] (4.34i)

0 ≤ tue ≤ 1 e ∈ E, u ∈ [U ] (4.34j)

xui ∈{0, 1}, 0 ≤ sui ≤ 1 i ∈ V, u ∈ [U ]. (4.34k)

Formulation (4.34) suffers from symmetry and weak linear relaxation bounds. Even

with the several enhancements proposed in Köhler et al. [2013], including preprocess-

ing, additional valid inequalities, and symmetry-breaking constraints, MIP solvers

struggle to solve instances with a few dozen vertices.

Kramer et al. [2016] applied DW decomposition to that formulation. By keep-

ing (4.34b) in the Master, the remaining constraints decompose into U identical

subproblems. After a few simplifications, one obtains the following SPP:

max
∑
q∈Q

cqλq (4.35a)

s.t.
∑
q∈Q

qiλq = 1 i ∈ V (4.35b)

λ ∈ Z|Q|
+ , (4.35c)

where Q = {χ(S) : S ⊆ V, S ̸= ∅}. For q = χ(S) ∈ Q, qi indicates whether vertex

i belongs to S and cq = CF (S). The linear relaxation of (4.35) can be solved by
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the CGA, the pricing subproblem being the following MIP:

max z = r−
∑
i∈V

π∗
i (4.36a)

s.t. tij ≤xi, tij ≤ xj , tij ≥ xi + xj − 1 {i, j} ∈ E (4.36b)

r ≤
∑
u∈V

xi (4.36c)

si ≤ r, si ≤ xi, si ≥ r + xi − 1 i ∈ V (4.36d)∑
{i,j}∈E

cij(si + sj) = 2
∑
e∈E

cete (4.36e)

0 ≤ r ≤ 1 (4.36f)

0 ≤ te ≤ 1 e ∈ E (4.36g)

xi ∈ {0,1}, 0 ≤ si ≤ 1 i ∈ V, (4.36h)

where vectors π∗ are RMLP optimal values for the dual variables of Constraints

(4.35b). MIP (4.36) still has a weak linear relaxation. However, it does not suffer

from symmetry and is much smaller than (4.34), having O(U) times fewer variables

and constraints. Therefore, at least for moderated-sized instances, those pricing

MIPs can be solved in quite reasonable times. The BPA in Kramer et al. [2016]

uses the Ryan-Foster branching, which is non-robust. Forcing a pair of vertices to

belong to the same cluster actually makes the pricing MIPs a bit easier (a constraint

in format xi = xj is easily handled by a MIP solver already in its preprocessing

phase, leading to the elimination of one of those variables). On the other hand,

many constraints with format xi+xj ≤ 1, forcing pairs of vertices to be in different

clusters, can make the pricing MIPs significantly harder. In practice, that non-

robustness is not an issue in the resulting BPA: the linear relaxation of (4.34) is so

strong that very few branchings are needed.

We reproduce the main computational results in Kramer et al. [2016]. Table 4.1

compares the solution of (4.34) (already with the enhancements proposed in Köhler

et al. [2013]) by commercial solver CPLEX 12.2 with three BPA variants. The 45

test instances were divided into three sets: small (up to 24 vertices), medium (up

to 40 vertices), and large (up to 60 vertices). The time limit was 11,000 seconds.

For each approach the number of solved instances and the average running times

(counting only the solved instances) are given.

It can be seen that the most basic BPA variant (BPA I), the one that optimally
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Table 4.1: Comparison of a MIP solver and BPA on the
Software Clustering Problem

Instances sets MIP BPA I BPA II BPA III

Small instances

Avg. time (s) 0.60 1.38 0.63 0.05

Inst. solved 15 15 15 15

Medium instances

Avg. time (s) 762 73.5 11.0 3.09

Inst. solved 16 17 17 17

Large instances

Avg. time (s) 5649 1673 75.1 52.3

Inst. solved 3 13 13 13

Source: Kramer et al. [2016].

solves the pricing MIP (4.36) in each iteration to generate a single column, is already

better than CPLEX and can solve all 45 instances. Improved running times are

obtained by the BPA II variant that calls several modified pricing MIPs to generate

multiple columns in each iteration. The best running times are obtained by the BPA

III variant that uses the following pricing heuristic. It can be proved that an optimal

solution only contains clusters over sets S that induce connected subgraphs of G.

Before the CG begins, all those connected sets S such that |S| ≤ 6 are enumerated

and stored in a table, sorted in increasing order of cardinality. The heuristic pricing

consists in evaluating the reduced cost of the columns corresponding to the sets in

that table. The MIP pricing (4.36) is only called when no column with negative

reduced cost is found by the heuristic. In 43 out of the 45 instances, the root node

solution was already integer and there was no need for branching. In the remaining

two instances a single branching was enough.

The software clustering case was selected to illustrate a situation when a rather

straightforward application of DW decomposition already leads to significant gains,

even when the pricing is solved by a general MIP solver. While the proposed BPAs

were shown to be efficient in those instances with up to 60 vertices, solving larger

instances would probably require more sophisticated BPAs. The exact pricing by

MIP is likely to become a bottleneck. So, one should develop pricing heuristics able

to find clusters with cardinality larger than six, to reduce the number of calls to the

exact MIP. At some size even a single call to solve (4.36) may become unpractically
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time-consuming. In that case, one would need to improve the exact pricing, either

by finding a stronger MIP formulation or even by devising specialized combinatorial

algorithms for it (akin to those that are used in BPAs for Graph Coloring Prob-

lems). Another alternative for handling big software clustering instances is giving

up solution optimality and creating an effective and efficient CG-based heuristic

that only performs heuristic pricing (see Chapter 6).

4.7. Assessment of Column Generation

for solving MIPs and LCOPs
In a similar manner to Chapter 2, we conclude this chapter by evaluating the effec-

tiveness of a Dantzig-Wolfe reformulation and Branch(-Cut)-and-Price as a practical

alternative for solving a Mixed Integer Programming problem, in comparison to di-

rectly solving it with the BCA available in a MIP solver. Our focus here is on

situations where the user is seeking proven optimal solutions. For cases where good

enough heuristic solutions are sufficient, the reader should refer to Section 6.5. Our

assessment will be split into separate cases.

4.7.1. General MIPs
By general MIPs we mean MIPs, often coming from real-world applications, without

a clear special structure, like, for example, those collected in the MIPLIB repository.

There had been recent progress on this use of Column Generation [Bergner et al.,

2015, Kruber et al., 2017, Khaniyev et al., 2018, Basso and Ceselli, 2022, 2023].

These works are paving the way for the development of future general-purpose MIP

solvers based on Column Generation and on the BPA/BCPA that rival the existing

MIP solvers based on the BCA across a substantial portion of the instances. That

hope is founded on the fact that the MIPs obtained by a suitable DW reformulated

can be stronger than the original MIPs, leading to smaller branch-and-bound trees.

Yet, there are still formidable obstacles in that direction:

• The solution of the reformulated MIP by the BPA/BCPA is not likely to be

effective unless the decomposition leads to at least several multiple subprob-

lems. In an extreme scenario where only a single subproblem exists, the cor-
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responding pricing subproblem would be nearly as large as the original MIP,

and lacking any specific structure, it must be solved by a general-purpose MIP

solver. There is almost no hope that this can be efficient. Decomposition into

only a few subproblems is still not likely to be efficient, since the resulting pric-

ing MIPs would still be too large. The issue with large pricing subproblems is

aggravated by the fact, already mentioned in Chapter 2 on DW decomposition

for LP, that very few subproblems lead to slow CG convergence.

• Therefore, it is very important to find a decomposition that leads to many

smaller subproblems. However, general MIPs usually do not have a suit-

able block-angular matrix structure. What can be usually found is a double-

bordered block-diagonal structure (see Note 2.9). Therefore, it is necessary to

automatically determine not only which constraints will be kept in the master

but also which variables will be shared among different subproblems. This

is a complex pattern recognition task, complicated by the following tradeoff:

more shared variables permit decomposition into more subproblems, which in

principle has a positive effect; however, as also explained in Note 2.9, more

shared variables make the CGA convergence slower.

At the time of writing, Column Generation for solving general MIPs is still a niche

technique, that may supplant the standard BCA-based MIP solvers in relatively few

cases. It should be noted that the latter solvers are based on much more mature

techniques, created over decades of extensive research, both in academia and in

industry. We believe that there is a larger potential for improvements on the less

researched CG-based methods.

4.7.2. MIPs formulating specific LCOPs
How to know when DW reformulation and Column Generation are likely to be a

good approach for a certain LCOP, instead of solving directly its original formula-

tion? This is one of the most important questions that the readers of this book may

pose. As expected in such a complex matter, there is no definitive answer. In fact,

sometimes the choice of the method may even depend on the characteristics of the

particular LCOP instances that one wishes to solve. For example, part of the GAP

instances are better solved with the original formulation and others with the CG

approach. Yet, we may provide some guidelines. Some definitions are needed:
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Definition 4.9: An original LCOP formulation is said to be compact if it is not

too large, so its linear relaxation can be “quickly” solved by a simplex or interior-

point method.

This is a practical definition, not a mathematically precise one. Note that sev-

eral authors use the expression compact formulation as a synonymous of original

formulation. We believe that such nomenclature can be misleading and should be

avoided. For example, the exponentially-sized original CSP formulation (4.23) is

certainly not compact!

Definition 4.10: An original LCOP formulation is said to be symmetric if what

is essentially a single LCOP solution has many alternative representations as MIP

solutions, to the point that branching or cutting over the original MIP variables

may be ineffective.

Again, we intentionally provided a practical definition of a symmetric formula-

tion. Now we can provide the following guidelines:

• If the original LCOP formulation is compact and asymmetric the DW reformulation

is likely to pay only if it provides a significantly strengthened formulation,

leading to much smaller BB trees. The reason is that evaluating a tree node

using CG is usually substantially more expensive than solving a compact LP

(see the assessment of CG for solving LPs in Section 2.7). An example of

such a situation is the GAP. The original formulation (4.16) is compact and

asymmetric, but a BPA may still perform much better in instances where the

reformulated MIP is significantly stronger (see Note 4.8). It is important to

note that strengthened formulations are often obtained in cases where the

resulting pricing subproblems are NP-hard. Yet, CG effectiveness may also

depend on having good specialized algorithms for those NP-hard subprob-

lems.

• If the original LCOP formulation is not compact and/or is symmetric the DW

reformulation may pay even if the resulting formulation is not stronger. For

example, consider the pseudo-polynomially large original Formulation (4.33)

for the CSP. Its DW decomposition leads to a NFP subproblem. As it has

the integrality property, the resulting reformulation (equivalent to the KGG

formulation) will not be stronger. Yet, for large values of W , it can be much
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more practical to solve the reformulated problem by CG.

• If the original LCOP formulation is not compact and/or is symmetric the

DW reformulation may pay even if the pricing still has the be solved as a

not-so-strong MIP. The case study in Section 4.6 illustrates that situation.

• An additional circumstance that may favor the use of a DW reformulation is

when it is possible to use effective branching or cutting (usually non-robust)

over the generated variables, something that is simply not possible in the

original formulation.

Branch-and-Price and Branch-Cut-and-Price algorithms are the

best known way of solving many important NP-hard combinatorial

problems. Yet, successfully designing such algorithms can be tricky.

A key point to consider is the pricing subproblems’ structure and

how branching and cutting operations may affect it.

Notes

4.1. The fundamental Theorem 4.1 was proved in Geoffrion [1974] in the context

of Lagrangian Relaxation for integer programming. Magnanti et al. [1976]

realized that it also applied to DW decomposition for integer programming.

References that discuss general CG for integer programming include Barnhart

et al. [1998], Wilhelm [2001], Vanderbeck and Savelsbergh [2006], Gamrath

[2010], Vanderbeck and Wolsey [2010], Lübbecke [2011], Sadykov [2019], Si-

monetti et al. [2022]. The book Desaulniers et al. [2005] starts with a primer

on CG [Desrosiers and Lübbecke, 2005] and has another 11 contributed chap-

ters covering many aspects of the subject. Integer programming textbooks like

Conforti et al. [2014], Wolsey [2020] also have chapters on CG. Very recently,

the preprint of a full book on the topic was made available as Desrosiers et al.

[2024].
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4.2. DW IP reformulation by convexification. The scheme described in Sec-

tion 4.1 is known as DW IP reformulation by discretization because the re-

sulting reformulated IP (4.3) has one variable for each point in Int(P ). In

an alternative scheme, known as DW IP reformulation by convexification and

fully described in Vanderbeck and Savelsbergh [2006] or in Gamrath [2010], the

reformulated IP would only have variables for points in Ext(Conv(Int(P ))),

the extreme integer points in P . This is correct because the other points in

Int(P ) can be represented as convex combinations of those extreme integer

points. The resulting subproblem IP (4.6) would remain the same (actually,

in order to be technically correct, one would have to use an IP solving method

that guarantees that the returned solution is in Ext(Conv(Int(P ))), even if

there are alternative optimal solutions in Int(P ) \ Ext(Conv(Int(P )))).

If Int(P ) ⊆ Bn, as often happens in the context of LCOPs, then Int(P ) =

Ext(Conv(Int(P ))) and both schemes are actually identical. Consider the

cases where Int(P ) ⊃ Ext(Conv(Int(P ))), so the alternatives are distinct.

In general, there is no practical gain in choosing IP DW reformulation by

convexification. A rare exception can be found in Desaulniers [2010] and

Desaulniers et al. [2016] where the authors realized that the restriction to

points in Ext(Conv(Int(P ))) could accelerate their pricing algorithm. How-

ever, there is a big limitation in IP DW reformulation by convexification: as

the generated variables λ can not be assumed to be integer, it is not possible

to perform branching or cutting on them. This already rules out that scheme

in the advanced BCP algorithms that rely on strong non-robust cuts over the

generated variables.

4.3. Branching constraints/cuts in the subproblems. The robust BPA scheme

presented in Section 4.2.2 treats branching constraints over original variables

as additional constraints that are kept in the Master. There is an alternative

BPA scheme that may treat those branching constraints as if they are included

in the subproblems.

Consider an MLP in format (2.15) but such that all subproblems are distinct

(the case K = U) and branching constraints over a single original variable

xkj . The children nodes would have their subproblem k redefined to polyhedra

P
′k = P k ∩ (xkj ≤ ⌊xk∗j ⌋) and P

′′k = P k ∩ (xkj ≥ ⌈xk∗j ⌉), respectively. Such
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a branching is usually still robust. For example, in the GAP, a constraint

xkj ≤ 0 can be enforced by removing from the RMLP all incompatible columns,

corresponding to points q such that qj = 1 and qJ+k = 1, and by eliminating

job j from subproblem k, forbidding the generation of new columns with that

feature. A constraint xkj ≥ 1 is enforced by removing the incompatible columns

from the RMLP and by forcing job j to be in any solution from subproblem

k. This can be done by eliminating job j from subproblem k, solving the

residual Binary KP with machine capacity W − wk
j , and then including j in

the solution. This scheme is robust. In both children nodes, the pricing can

still be solved by a black-box Binary KP solver. In the ≥ children, it is even

possible to remove the row corresponding to job j from the RMLP. According

to fundamental Theorem 4.1, including a constraint in the subproblems could

possibly be stronger than keeping it in the master. However, in practice, this is

seldom the case for single original variable branching constraints. In the GAP

example, as in any problem where Int(P k) only has binary vectors, we have

that Conv(Int(P
′k)) = Conv(Int(P k)) ∩ (xkj = 0) and Conv(Int(P

′′k)) =

Conv(Int(P k)) ∩ (xkj = 1) (the proof is left as an exercise to the reader).

Therefore, there is no gain in strength. We do not enthusiastically recommend

implementing this BPA scheme for problems like GAP. The gains by having

slightly smaller Knapsack problems in the pricing and slightly smaller RMLPs

in some nodes may not compensate for the increased coding effort.

Note that the scheme can not be applied to cases where the original formu-

lation leads to many identical subproblems. As already said, in those cases,

branching over a single variable xuj is ineffective due to solution symmetries,

and also because it makes formerly identical subproblems distinct, leading to

additional pricing subproblems. Moreover, it is also not possible to branch on

the aggregated original y variables defined in (2.19c). This happens because

a branching constraint like ykj =
∑

u∈U(k) x
u
j ≥ ⌈yk∗j ⌉ has non-zero coefficients

in all subproblems in U(k). If such a constraint is not kept in the master,

those subproblems will not be independent anymore, completely breaking the

pricing structure. For example, consider the CVRP case and its original for-

mulation (4.27). It is simply not possible to introduce in (4.28) the branching

constraint xe = yij + yji =
∑

u∈[U ](y
u
ij + yuji) ≥ 1, for some edge e = {i, j}.

Observe that forcing the pricing subproblem in the child node corresponding

to xe ≥ 1 to only generate routes that contain edge e is wrong since other
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routes not having e are still needed.

If the original formulation has K groups of distinct subproblems, general cuts

that only have non-zero coefficients on the original variables xk corresponding

to a certain subproblem k ∈ [K] such that |U(k)| = 1 can be introduced into

subproblem polyhedron P k. However, it is unlikely that this will be robust.

In the GAP robust BCPA example shown in Section 4.4.1, cut x21 + 2x12 +

2x13 + x24 ≤ 3 is equivalent to −x11 +2x12 +2x13− x14 ≤ 1. The latter cut can be

introduced into P 1. However, it would destroy its KP structure. The resulting

pricing would need to be solved as a MIP.

Overall, branching/cuts over the original variables can be handled robustly

by including them in the master. Sometimes, it is possible to include them in

the subproblems robustly, with some potential gains in performance.

4.4. Non-proper generated variables. Note 2.7 proposes a categorization of the

variables involved in a DW decomposition. However, in DW IP reformulation,

the generated variables may be additionally classified as proper or non-proper.

Definition 4.11: Non-proper variable.A generated variable is non-proper

if it can not assume a positive value in a feasible integer solution.

Non-proper variables may appear with positive values in fractional DWM so-

lutions, weakening the resulting bounds. Why not always prevent the pricing

from generating non-proper variables? In reality, this is a trade-off. As seen

in Section 3.4.2 on CVRP, elementary routes relaxations like q-routes and ng-

routes deliberately include additional non-proper variables in the formulation

to make the pricing subproblem much more tractable. For example, ng-routes

are favored in modern BCPAs because they achieve an excellent balance be-

tween bound quality and pricing difficulty. Another example of a situation

where non-proper variables may exist in the CSP is given in Exercise E 4.9.

In situations where the DW reformulation for IP leads to a single subproblem

non-proper variables always exist.

Recognizing the non-proper variables is essential in diving heuristics, as de-

scribed in Chapter 6. Indeed, one can not fix a non-proper variable to a positive

integer value without causing infeasibility.
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4.5. Projection of cuts in an extended space. A DW reformulation can be

viewed as a method for obtaining an extended formulation with an exponential

number of additional variables, as can be seen in the explicit reformulated IP

(4.2) that has both x and λ variables. As shown in Section 4.3.1, a single cut

over the latter variables may project into more than one cut in the original x

space. This is not something particular to DW reformulation, it may happen

with extended formulations in general.

For example, consider the polyhedron P = {x ∈ R2 : 3x1 + 2x2 ≤ 5, x ≥ 0},
shown in Figure 4.12a, which provides a formulation forX = {(0, 0), (0, 1), (0, 2),
(1, 0), (1, 1)}. Polyhedron P ′ = {(x1, x2, y) ∈ R3 : 3x1 + 2x2 ≤ 5, y ≥ x1, y ≥
x2, (x1, x2, y) ≥ 0} provides an extended formulation for X. As can be seen

in Figure 4.12b, Projx(P
′) = P . Therefore, that extended formulation is not

stronger. However, suppose one adds the cut x1 + y ≤ 2 to P ′, which is rep-

resented by the green hyperplane in Figure 4.12c. Then, the projection of the

resulting polyhedron becomes exactly Conv(X). This means that a single new

cut in the extended space (together with other already existing inequalities)

implies the two facet-defining inequalities x1 ≤ 1 and x1 + x2 ≤ 2 in the

original space (Figure 4.12d).

4.6. Knapsack solvers. The most basic knapsack problem variant is defined as

follows:

Definition 4.12: Binary Knapsack Problem (Binary KP). Instance: J

items; profits cj and integer weights wj , j ∈ [J ]; integer capacity W . Solutions:

Subsets J ′ of [J ] such that
∑

j∈J ′ wj ≤W . Goal: maximize
∑

j∈J ′ cj .

The Binary KP is weakly NP-hard and can be solved in pseudo-polynomial

O(JW ) time by a Dynamic Programming Algorithm. This is already a guar-

antee that a Binary KP can only be difficult if W is large. Yet, after much

research, as reported in the books Martello and Toth [1990] and Kellerer et al.

[2004], there are algorithms with a practical performance that is much better

than that. The best existing algorithms have been available, for over 20 years,

as open-source C codes on the page kept by David Pisinger [Pisinger]. The

performance of those algorithms is very impressive, on the hardest class of
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3x1+2x2≤5

(a) Polyhedron P
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x2

y

3x1+2x2≤5

3x1+2x2+y≤5

x 2
≤yx

1≤
y

(b) Extended polyhedron P ′ and its
projection P

x1
x2

y

x 1
+
y≤

2

(c) Insertion of cut x1 + y ≤ 2 over
polyhedron P ′

x1
x2

y

x 1
+
y≤

2

x1≤1

x1+x2≤2

(d) Projection of the resulting poly-
hedron matches Conv(X)

Figure 4.12: Example of projection of cuts in extended space
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instances with J = 10, 000 and W = 106, the average running times reported

in Pisinger [2005] for the Combo code is around 20 milliseconds!

Pisinger’s page also contains highly efficient codes for other variants, including

the following ones: Bounded KP, where the same item can appear multiple

times in J ′, up to a given bound uj (the Integer KP being the particular case

where the bounds are infinite); and Multiple Choice KP, where the items are

partitioned into disjoint classes and at most one item from each class can

appear in J ′.

4.7. ISP and MWCP solvers. CG-based algorithms for the Graph Coloring

Problem need to solve Independent Set Problems (ISP) (see Definition 4.8) for

their pricing. The ISP is equivalent to the Maximum Weighted Clique Prob-

lem (MWCP) in the complement graph. Thus, an ISP solver can solve MWCP

instances and vice-versa. Specialized combinatorial branch-and-bound algo-

rithms provide the best performance in finding proven optimal ISP/MWCP

solutions. To our knowledge, the best available open-source codes are TSM-

MWC Jiang and Li [2017] based on the algorithm by Jiang et al. [2018] and the

hybrid ISP solver Held [2022] based on the algorithm by Held et al. [2012] for

lower density graphs and CLIQUER algorithm Niskanen and Österg̊ard [2010]

by Österg̊ard [2001] for higher density graphs. San Segundo et al. [2019] pro-

vide an experimental comparison between the best available MWCP solvers,

and also present an efficient branch-and-bound algorithm for this problem,

whose implementation is however not available online. According to them, in-

stances with up to several hundreds of nodes can be solved in a short time,

except for the very sparse (for the ISP) graphs. When graphs are dense, much

larger instances (with up to several thousand nodes) may be solved. Finally,

we can mention that modern MIP solvers are competitive in solving small and

medium-sized ISP instances with very sparse graphs.

4.8. GAP solvers. General MIP solvers perform reasonably well on the natural

formulation of the Generalized Assignment Problem. They can recognize the

structure of Constraints (4.16c)-(4.16d) and separate cuts valid for the binary

knapsack polyhedra defined by Conv(Qk), k ∈ [K], like lifted cover cuts (see
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Wolsey [2020]). However, they often fail in hard instances. As reported in Pes-

soa et al. [2020], a top commercial MIP solver, with a time limit of 1 hour,

could only solve 1 out of the 30 instances with up to 90 jobs proposed in Nauss

[2003]; while a BCPA could solve 28 of those instances with the same time

limit. The harder GAP instances are usually those with tight capacities Wk

and a negative correlation between costs ckj and loads wk
j . It is worth reducing

gaps by fully convexifying the knapsack constraints for those instances. The

first GC-based algorithm for GAP was the BPA in Savelsbergh [1997]. Pigatti

et al. [2005] improved that BPA by adding dual stabilization, a technique pre-

sented in Chapter 7. Avella et al. [2010] got good results using Fenchel Cuts as

an alternative way of fully convexifying the knapsack constraints, as described

in Note 4.15. The algorithm in Posta et al. [2012] achieved the current best re-

sults for most instances using Lagrangian Relaxation, a method closely related

to CG, as described in Section 5.4.2. Finally, the generic BCPA in VRPSolver

[Pessoa et al., 2020], even though it solves the problem as a “VRP” (see Note

4.12), not taking advantage of specialized knapsack algorithms in the pricing,

may obtain the best results on instances with very few jobs per machine.

4.9. The true CSP formulation in Kantorovich (1939). Almost all authors

in the last 20 years attributed the weak CSP Formulation (4.23) to Kan-

torovich [1960], a translation of Kantorovich [1939]. We read that reference

carefully, including its original Russian version, and found no trace of that

formulation! Instead, we discovered that Kantorovich proposed a CSP formu-

lation, including the variant with multiple stock sizes, similar to Gilmore and

Gomory [1961], but implicitly assuming that the number of possible cutting

patterns is small, so they can be enumerated by hand.

The main Kantorovich’s CSP model (page 380 in Kantorovich [1960]) corre-

sponds to the following variant. Suppose that a factory produces a certain

article. Each article requires dj units of item j, j ∈ [J ]. There are K stock

types. For each stock type k ∈ [K], Qk is its set of cutting patterns and uk is

the number of units of that stock that are available. The objective is to pro-

duce the maximum number of articles. The symbols used in that description

were adapted to match those in Section 4.4.2, but apart from that we now

present the model in its original phrasing:
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“We have the following conditions for the determination of the unknowns λk
q:

1 )λk
q ≥ 0 and equal to whole numbers;

2 )
∑
q∈Qk

λk
q = uk ;

3 )

∑
k∈[K ]

∑
q∈Qk

q1λ
k
q

d1
=

∑
k∈[K ]

∑
q∈Qk

q2λ
k
q

d2
= . . . =

∑
k∈[K ]

∑
q∈Qk

qJλ
k
q

dJ

and that their common value be a maximum.”

Translating that to modern notation, we obtain:

max z (4.37a)

s.t.
∑
k∈[K]

∑
q∈Qk

qjλ
k
q = dj z j ∈ [J ] (4.37b)

∑
q∈Qk

λk
q = uk k ∈ [K] (4.37c)

λ ≥ 0 and integer, (4.37d)

where variable z represents the “common value”, which is nothing but the

number of articles produced. Kantorovich did not restrict that formulation

to 1D cutting. On the contrary, several of the mentioned cases of use are 2D

cutting (sheets of glass or iron, boards, etc).

The chapter proceeds by presenting “a very simple problem” that corresponds

to the standard 1D CSP with a single stock type: how to cut 100 copies of

each of three items with lengths 2.9, 2.1, and 1.5 using the minimum number

of stocks of length 7.4? In other words, the instance J = 3, w = ( 2.9 2.1 1.5 ),

d = ( 100 100 100 ), and W = 7.4. Six cutting patterns are enumerated and

the optimal solution is given. Finally, a problem corresponding to an instance

of his more general CSP model is posed: if an article requires one copy of each

of three items, with lengths 2.9, 2.1, and 1.5, and there are 100 stocks of length

7.4 and 50 stocks of length 6.4, what is the maximum number of articles that

can be produced? The optimal solution (producing 161 articles) is obtained

with hisMethod of Resolving Multipliers, which essentially consists of dualizing

some constraints, solving the Lagrangian Dual Problem (see Chapter 5) and
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then recovering the primal solution (which is rounded to integers if necessary).

The CSP is only a small part of Kantorovich [1939]. The main text pro-

poses LP models for nine families of industrial production problems. Ap-

pendix 1 presents the Method of Resolving Multipliers. Appendix 2 is the

detailed numerical solution of a real-world problem (having 36 variables and

12 constraints) from a plywood plant. Finally, Appendix 3, titled “Theoretical

Supplement”, provides analytical and geometrical proofs of the existence of

optimal resolving multipliers.

The subsequent development of linear programming in Stalinist Soviet Union

was much delayed because some authorities found that its concepts clashed

with the orthodox economic theories of the country (see Gardner [1990],

Polyak [2002], Vershik [2007], Bollard [2020], Boldyrev and Düppe [2020],

Ellman [2022] and Uchoa and Sadykov [2024] for more details on the histori-

cal facts mentioned in this paragraph). Kantorovitch had ambitious goals for

linear programming and hoped that it could be used not only on local-level

industrial problems but also for centralized economic planning. In 1942 he sub-

mitted a manuscript named The Best Use of Economic Resources to Gosplan,

the powerful Soviet planning agency. After its strong condemnation, he was

forced to keep it unpublished. The ideological objections to linear program-

ming are related to the Labor Theory of Value, which asserts that the value

of a good is 100% determined by the amount of labor required to produce it. It

was observed that the dual variables (the conspicuous optimal resolving mul-

tipliers) could be interpreted as prices that would not fit in that theory, which

is central to Marxism. Note that the then-competing “capitalist” Marginalist

Theory of Value states that the value of a good is given by how much gain one

additional unit of it brings, a concept that is quite consistent with LP duality.

In fact, linear programming and its duality theory would later become a ma-

jor influence on Western economics (see for example the classic book Dorfman

et al. [1958]). Anyway, only in 1956, after Stalin’s death, Kantorovitch could

finally openly discuss and teach linear programming.

4.10. The 0-th Column Generation algorithm. General LP was banned in the

USSR during Stalin’s rule. Yet, Kantorovich could publish a bit on specific

LP applications: two papers on the transportation problem and Kantorovich
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and Zalgaller [1951], a 200-page book only on the CSP. The book was devel-

oped from a real application: planning the cutting of steel in the Leningrad

Egorov Railroad Car plant, which happened in the late 1940s. Besides 1D

cutting, that book also deals with 2D rectangular guillotine and 2D circular

cutting problems. The solution methods are based on the model introduced

in Kantorovich [1939], but viewed as an LP, not as an IP. In other words,

the fractional use of a cutting pattern was allowed. The modeling assumption

is that item demands represent proportions. For example, suppose that the

manufactured articles require 2 copies of item 1, 4 copies of item 2, and 1

copy of item 3. The actual number of articles that will be manufactured is

unknown, as the factory will be operated for an undetermined period of time.

So, the CSP is solved with demands d = ( 2 4 1 ). Its fractional solution will

determine the proportions in which each cutting pattern should be used. The

CSP optimal solution value is the average number of stocks used per article.

Unlike in Kantorovich [1939], the cutting patterns are not assumed to be

enumerated in advance. In fact, Kantorovich and Zalgaller [1951] proposes

an iterative approach that can be regarded as a complete column generation

algorithm. They propose finding improving patterns by what we now call

reduced costs and state the optimality criterion.

We reproduce here the example found in the first edition of that book 1 (pub-

lished in Russian and never translated to Western languages), the steps for

solving the CSP instance having J = 3, w = ( 1400 950 650 ), d = ( 2 4 1 ),

and W = 5000. We kept the notation very close to the original, except that

here the dual variables (called “indices” in the original text) are notated as

π1, π2, and π3. The starting solution only uses single-item patterns: ( 3 0 0 )

with value 2/3, ( 0 5 0 ) with value 4/5, ( 0 0 7 ) with 1/7; solution cost is

≈ 1.61. After two patterns are generated, the solution is ( 3 0 1 ) with value

2/3, ( 0 5 0 ) with value 71/91, ( 0 1 6 ) with value 1/18; solution cost is ≈ 1.51.

1We thank Alexander Lazarev and Michael Khachay for photographing page by page a copy

available at the Moscow State University library.
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At that point, the indices are calculated by solving:
3π1 + π3 =1

5π2 =1

π2 +6π3 =1

⇒
π1 = 13/45

π2 = 1/5

π3 = 2/15.

By solving an integer knapsack problem, the improving pattern (1, 3, 1) is

found (13/45 + 3/5 + 2/15 = 46/45 > 1). Associate variables x, y, z to the

current patterns and θ the new one. We have that:
3x + θ=2

5y+ z+3θ=4

x +6z+ θ=1

⇔


3x = 2− θ

5y+ z=4− 3θ

x +6z= 1− θ.

Solving the 3 × 3 linear system (considering the θ terms as constants in the

RHS), the following expressions are obtained:

x =
2− θ

3
, z =

1− 2θ

18
, y =

71− 52θ

90
.

So, when θ increases, the first value which nullifies is z (when θ = 1
2). Thus

(0, 1, 6) is replaced by (1, 3, 1). It can be deduced that x = 1
2 and y = 1

2 . The

cost of the new solution is thus 1.5. Recalculate the indices by solving
3π1 + π3 =1

5π2 =1

π1 +3π2 + π3 =1

⇒
π1 = 3/10

π2 = 2/10

π3 = 1/10.

By solving another integer knapsack problem, it is shown that no improving

pattern exists and that the current CSP solution is optimal. This means that

the proposed CG does not use the Method of Resolving Multipliers. Instead, it

uses something similar to the Revised Simplex Algorithm, anticipating Dantzig

[1953] (for a particular case).

But how the integer knapsack problems were solved? Kantorovitch and Zal-

galler proposed the so-called Scale of Indices method, which can be viewed as

a graphical version of a Dynamic Programming algorithm. The optimal scale

of indices corresponding to the last knapsack problem in the above example

is shown in Figure 4.13 (this figure and Figure 4.14 are almost identical to
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the figures found in their book). The indices values are multiplied by 10 in

order to make them integers. The scale of indices indicates the best solution

value for each knapsack capacity up to W , the solutions themselves are also

indicated. As the value for W = 500 is 10 (1.0 after dividing it by 10), it

is shown that there is no improving pattern and the current CSP solution is

optimal.

The optimal scale of indices is iteratively constructed using two sheets of

semi-transparent calc paper, as illustrated in Figure 4.14. Two copies of the

starting scale of indices (shown at the top of that figure) should be plotted, one

on each sheet of semi-transparent paper. The starting scale should have the

values corresponding to single-item solutions (1 for capacity 65, 2 for capacity

95, and 3 for capacity 140), plus some possibly non-optimal values for larger

values of capacity. Then one of the copies is shifted, as illustrated in the middle

of the figure. The dashed regions indicate better knapsack solutions. Those

improvements are marked, leading to the improved scale shown at the bottom

of the figure. The procedure is repeated until no improvement is possible.

In today’s context, the approach seems odd. However, in the era before com-

puters, it was a widespread practice for engineers to utilize mechanical analog

tools, such as slide rules, to speed up computations. Due to its parallel struc-

ture, the Scale of Indices method is capable of evaluating several potential im-

provements simultaneously, convergence is usually fast. Nonetheless, similar

to most mechanical analog techniques, the method suffers from low numerical

precision. The Dynamic Programming knapsack algorithm with explicit stage-

by-stage numerical calculations proposed by Richard Bellman in the mid-50s

can have arbitrary precision.

Kantorovich and Zalgaller [1951] is an extensive and mature work that cer-

tainly had a significant impact in the USSR, even deserving a second edition

in 1971. Yet, it had a negligible impact in the Western world, where is nearly

unknown until today. In particular, the proposed CGA did not influence the

mainstream development of the field. This is why it was called the “0-th Col-

umn Generation algorithm” in Uchoa and Sadykov [2024]

4.11. CSP and BPP CG-based solvers. The first widely known practical use of

column generation was the method proposed in Gilmore and Gomory [1961]
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Figure 4.13: An optimal “Scale of Indices”.

for the CSP (including the variant with multiple stock sizes). They inde-

pendently rediscovered the cutting-pattern-based formulation in Kantorovich

[1939, 1960], which we will refer to as Kantorovich-Gilmore-Gomory formu-

lation and proposed solving its linear relaxation by CG, using Dynamic Pro-

gramming to solve the integer knapsack pricing subproblems. A more advanced

version of that method, which was already being used in the routine operation

of a large paper mill, appears in Gilmore and Gomory [1963]. That version

proposes alternative methods for solving the knapsack subproblems and even

includes a number of other practical constraints, like limits on the number of

knives available for cutting the paper rolls. Extensive computational results

are presented and discussed, including the effects of having a larger/smaller

stock size or multiple stock sizes on the waste. Gilmore and Gomory [1965]

considers cutting of 2D rectangular stocks.

Many subsequent works improved on those seminal papers, often proposing

better ways of finding an integer solution from a fractional solution of the

CGA. Given the remarkable strength of the Kantorovich-Gilmore-Gomory
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Figure 4.14: The initial scale of indices is shown on (a). In (b), a copy of that
scale shifted by (950, 2) obtains the improvements depicted as dashed regions. The
resulting improved scale is shown in (c). The procedure should be repeated until no
improvement is possible.
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bound (see Conjecture 4.1), in most instances, the obtained solutions could

be proved to be near-optimal or even optimal. Yet, the first CG-based exact

algorithm for the CSP (actually, for the Bin Packing Problem, a.k.a. Binary

CSP) was the BPA in Vance et al. [1994]. Devising a branching rule that is

both practically and theoretically good in BPAs or BCPAs for the BPP/CSP is

a challenge and many alternatives have been proposed, including Vance [1998],

Vanderbeck [1999], Valério de Carvalho [1999], Belov et al. [2005], Belov and

Scheithauer [2006], Delorme and Iori [2020], Wei et al. [2020], Pessoa et al.

[2021b], de Lima et al. [2022], Baldacci et al. [2023] and da Silva and Schouery

[2024].

The CSP and BPP are strongly NP-hard but very well-solved in practice. A

respectable fraction of the instances can be quickly solved by only checking if

some fast combinatorial lower bound matches the value of a solution obtained

by simple heuristics (like First-Fit Decreasing) or by more sophisticated ones

(like Alvim et al. [2004], Loh et al. [2008], Quiroz-Castellanos et al. [2015]).

As shown in Fekete and Schepers [2001] (see also Clautiaux et al. [2010],

Alves et al. [2016]), those combinatorial bounds correspond to dual feasible

functions for approximating the Kantorovich-Gilmore-Gomory bound. The

very advanced CG-based algorithms that are being proposed recently compete

on solving adversarial instances, created with the intent of being hard, and

even in those instances, finding a solution proven to be not more than one unit

away from the optimal is quite easy. In other words, they are fighting over at

most one stock! Yet, that research effort is definitely worth it because there are

lots of other more complex cutting and packing problems (including 2D and 3D

variants) that are not so well-solved by CG or by any other known method. In

those problems, the CG bounds are still very good but not so almost incredibly

tight (Conjecture 4.1 may not hold) and the pricing subproblems are much

harder. So, BPAs and BCPAs need to close significant gaps and need to do so

without making the subproblems intractable.

4.12. VRP BCP solvers. As described in Section 3.4.2, in the early 2000s BCAs

were the dominant approach for the CVRP. BPAs based on the MLP (4.29)

perform poorly. However, after Fukasawa et al. [2006], Baldacci et al. [2008,

2011], Røpke [2012], Contardo and Martinelli [2014], Pecin et al. [2017b], it is
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known that algorithms that combine CG with cuts are much better than BCAs

on most CVRP instances. Yet, there are still some instances, those where an

optimal solution has only a few very long routes, where BC algorithms over

Formulation (3.6) still perform better. In fact, the algorithm in Fukasawa

et al. [2006] checked at the root node whether the CG was experiencing severe

slow convergence (an issue that is typical on instances with long routes) and

sometimes could automatically switch to a BCA similar to the one in Lysgaard

et al. [2004].

However, other VRP variants are still more challenging for BCAs, which are

rarely the best option.

Definition 4.13: Vehicle Routing Problem with Time Windows (VRPTW).

Instance: Directed graph G = (V,A), where V = {0}∪V+, vertex 0 represents

a depot and V+ the set of customers; arc costs ca and integer arc times ta,

a ∈ A; integer positive demands di and integer time windows [ai, bi], i ∈ V+;

and integer vehicle capacity W and integer time horizon T . Solutions: sets

of routes in G that, together, visit all customers exactly once. A route is a

vertex-elementary cycle (a cycle that does not repeat vertices) that passes by

the depot such that the sum of the demands of the customers in it does not

exceed W . Moreover, routes are assumed to start at time 0, they should visit

customers at a time within their time windows (it is possible to arrive early

and wait) and then return to the depot before T . Goal: minimize the sum of

the cost of the arcs in the routes (some adopt the hierarchical goal of first

minimizing the number of routes and then the total cost).

The VRPTW is perhaps the second most widely studied 2 VRP variant. It

2The VRPTW is “overrepresented” in the CG literature, appearing more often than the CVRP.

This has historical reasons: the early BP algorithms (see Note 4.19) worked very well on VRPTW

instances with narrow time windows, but failed in the more classic CVRP.
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would be possible to have a VRPTW formulation akin to Formulation (3.6):

min
∑
e∈A

caya (4.38a)

s.t.
∑

a∈δ−(i)

ya = 1 i ∈ V+ (4.38b)

∑
a∈δ+(i)

ya = 1 i ∈ V+ (4.38c)

∑
a∈δ−(S)

ya ≥ k(S) S ⊆ V+ (4.38d)

y ∈ Z|A|
+ , (4.38e)

where k(S) is the minimum number of routes needed for visiting all cus-

tomers in S, taking into account both capacities and time windows. Inequal-

ities (4.38d), proposed by Kohl et al. [1999] and known as k-Path Cuts, are

fundamentally different from RCCs (3.6c). While the separation of RCCs is

NP-hard but well-done in practice by heuristics, the separation of k-Path

Cuts (even of only 2-Path Cuts, the subfamily where k(S) = 2) is a much

harder problem, since its decision version does not belong to NP. To merely

check if a given inequality in format (4.38d) is indeed a valid k-Path Cut, one

has to calculate k(S), a strongly NP-hard problem. This means that Formu-

lation (4.38) is not a promising start for a BCA. The existing BCAs for the

VRPTW (like Bard et al. [2002]) start from extended formulations that use

auxiliary variables and weak Big-M constraints (Note 3.12) for controlling the

time windows. The VRPTW is much better solved by BCPAs, like Kohl et al.

[1999], Kallehauge et al. [2006], Desaulniers et al. [2008], Jepsen et al. [2008],

Baldacci et al. [2011], Pecin et al. [2017a], Sadykov et al. [2021].

The VRP has hundreds of variants, perhaps even thousands depending on

the adopted taxonomy. Nearly every day some new CG-based algorithm for

a VRP variant is proposed, we have no hope of mentioning them all. How-

ever, there is a generic BCPA solver that obtains very good results over a

large number of variants, including the most classic ones. VRPSolver [Pes-

soa et al., 2020] defines an optimization model, introducing the concepts of

mapping, packing sets, and elementarity sets, that generalize and unify many

previous ideas. The VRPSolver model is generic enough to encompass many
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VRP variants and a significant number of other non-VRP problems too (like

GAP, BPP, Parallel Machine Scheduling, etc). The BCPA in VRPSolver in-

corporates many advanced elements proposed by different authors in the last

two decades (see Poggi and Uchoa [2014] and Costa et al. [2019] for surveys)

and was coded on top of BapCod CG framework [Sadykov and Vanderbeck,

2021]. It uses the pricing algorithms in [Sadykov et al., 2021]. Modeling with

VRPSolver (code available at [VRPSolver]) can be tricky and users often

need creativity to fit more complex problems into its model. Callback rou-

tines can be used to separate cuts valid for a specific application. Effective

modeling with VRPSolver may require knowledge about how the underlying

BCPA works (a knowledge offered in this book!). VRPSolver obtained most

of the current best results for CVRP and VRPTW (check CVRPLIB page

Uchoa et al. [2014] for continuously updated results). BCPAs using VRPSolver

appeared in more than 40 published articles, including those on the follow-

ing VRP variants: Heterogeneous Fleet [Pessoa et al., 2018, 2020], Backhauls

[Queiroga et al., 2020], Two-Echelon [Marques et al., 2020], Time-dependent

and multi-trips [Adamo et al., 2021], Multi-Depot [Sadykov et al., 2021], Ro-

bust CVRP [Pessoa et al., 2021a], Two-Echelon Stochastic Multi-period [Mo-

hamed et al., 2023], Multi-shuttle Crane Scheduling [Polten and Emde, 2022],

Clustered [Freitas et al., 2022], Electric Vehicle [Subramanyam et al., 2022],

Split-Delivery [Balster et al., 2023], Cumulative [Damião et al., 2023], Capac-

itated Location Routing [Liguori et al., 2023], Intermediate Stops [Roboredo

et al., 2023], Differential Harvesting [Volte et al., 2023], Simultaneous Pickup

and Delivery [Praxedes et al., 2024], Muti-Depot Open Route [Soares and

Roboredo, 2024]. A much more user-friendly but with limited functionalities

VRPSolver interface is VRPSolverEasy [Errami et al., 2023] (code available

at [VRPSolverEasy]).

4.13. Farley’s bound. In order to possibly reduce the number of CG iterations in

a BPA for the CSP, one may try to prune nodes using Theorem 2.8 statement

that zM ≥ zRM + Uc∗, where U , the number of identical subproblems in the

original formulation, in this case is given by the value of the best known integer

solution. In the BPA run depicted in Figure 4.9, even if an optimal U = 7 was

already known from the beginning, that bound would not save any iteration.
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For example, after S1.1.4, we would have that zM ≥ 151/24 + 7×−1/24 = 6.

However, another bounding mechanism proposed in Farley [1990] could have

saved one iteration.

Consider an MLP in the following format:

zM = min
∑
q∈Q

λq (4.39a)

s.t.
∑
q∈Q

(Aq)λq = b (4.39b)

λ ≥ 0. (4.39c)

The format, which includes the CSP case, is special because all variables have

the same positive cost (w.l.o.g. assumed to be 1) and there is no convexity

constraint.

Theorem 4.2: At any iteration of the CGA for solving (4.39), the value
zRM
1−c∗ is a lower bound on its optimal cost zM.

Proof. The dual of the MLP (4.39) is:

max πb (4.40a)

s.t. πApq ≤ 1 q ∈ Q. (4.40b)

Let π∗ be an optimal dual solution with value zRM = π∗b of some RMLP

and let c∗ = min{1 − π∗Aq : q ∈ Q} be the optimal solution value of the

corresponding pricing subproblem. For any q ∈ Q, π∗Aq ≤ 1 − c∗ =⇒
π∗

1−c∗Apq ≤ 1. Therefore, the dual solution π∗

1−c∗ is feasible for (4.40) and has

value zRM
1−c∗ .

It is interesting to compare the proof of Theorem 2.8 with the proof of Farley’s

bound. While the former obtains a dual feasible solution by increasing the dual

variable of the convexity constraint, the latter does that by scaling down the

π variables.

In the BPA run depicted in Figure 4.9, after S1.1.4 we would know that zM ≥
151/24
25/24 = 6.04. That bound would prove the optimality of an integer solution
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with value 7 and (if such a solution was already known) would avoid the last

CGA iteration.

4.14. Benders Decomposition for IP. Benders decomposition for LP is 100%

equivalent to performing DW decomposition on its dual (see Note 2.10). How-

ever, this symmetry breaks down when dealing with IPs, when they become

quite distinct techniques.

We begin by outlining the classic variant that appears in Benders [1962], where

the variables that remain in the Benders Master are integers and those that

go to the subproblems are continuous. Consider a MIP in format (2.39) but

with all the n variables x being non-negative integers. A derivation similar to

that in Note 2.10 results in the following Master Benders IP:

zBM = zIP = min cx+
∑
u∈[U ]

zu (4.41a)

s.t. zu ≥ q⊺(bu −Aux) u ∈ [U ], q ∈ Qu (4.41b)

r⊺(bu −Aux) ≤ 0 u ∈ [U ], r ∈ Ru (4.41c)

x ∈ Zn
+. (4.41d)

This is handled through an iterative process where one solves a sequence of

Restricted Master Benders IPs. Given an optimal integer solution (x∗ z∗) to

such a RMBIP, for each u ∈ [U ], the subproblem LP (2.44) is solved. An

unbounded ray in its dual provides a violated feasibility cut in (4.41c); an

optimal dual solution may provide a violated optimality cut in (4.41b). When

the process converges, x∗ is part of an optimal MIP solution, the optimal

values for continuous variables y may be retrieved from the last subproblems.

This kind of Benders decomposition can be applied, for example, to network

design problems where the relatively few binary variables indicate which links

should be built, while the many continuous variables are associated with multi-

commodity flows ensuring the desired connectivity properties [Costa, 2005].

The classic Benders decomposition for IP may be time-consuming because

each time a RMBIP is solved, even if it only differs from the previous RMBIP

by having a handful of additional constraints, a new BB search tree is built.

An alternative that become much more popular since the 2000s (referred to
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as Branch-and-Benders-Cut by some authors) is solving (4.41) by a BCA,

keeping a single search tree and using the Benders subproblem LPs to gener-

ate cuts either over fractional or integer solutions (x∗ z∗). The root node of

that BCA uses the Benders decomposition for LP described in Note 2.10 to

solve the linear relaxation of the original MIP, which may permit the practical

use of some strong but large extended formulations. Actually, as discussed in

Botton et al. [2013], it is not mandatory to perform a full separation of Ben-

ders cuts for fractional solutions at all nodes of the search tree. Remarkably,

automatic Benders decomposition and Branch-and-Benders-Cut were imple-

mented and are currently offered as one of the alternatives for MIP solving

in CPLEX [Bonami et al., 2020] and in SCIP [Maher, 2021]. According to

IBM CPLEX promoting material: “Benders decomposition is faster than tra-

ditional branch-and-cut for 5% of nontrivial MIP models. That number might

not seem impressive but for certain types of MIP problems Benders decompo-

sition is much faster.”

More details on Benders decomposition can be found in surveys like Rahma-

niani et al. [2017] or in textbooks like Wolsey [2020]. However, there are two

major differences between Benders and DW decomposition worth highlighting:

• The first major difference is conceptual. The CG mechanism requires

dual Master solutions and primal subproblem solutions. This means that

in standard DW decomposition for IP, the subproblems are solved as IPs.

This is what enables DW bounds to be potentially stronger, as formal-

ized in Theorem 4.1. The primal subproblem solutions can be obtained

by essentially any technique, including BB-based MIP solvers, Dynamic

Programming, etc. In contrast, Benders mechanism requires primal Mas-

ter solutions and dual subproblem solutions. This means that even if

their variables are integer, subproblems are traditionally solved as LPs

(or as convex optimization problems where strong duality exists [Geof-

frion, 1972]). Benders cuts are generated from dual rays and dual optimal

solutions, which BB-based MIP solvers or Dynamic Programming can not

provide.

Actually, as surveyed in Fakhri et al. [2017], there are many proposed

ideas for performing Benders decomposition with integer subproblems

(in order to obtain stronger node bounds in a Branch-and-Benders-Cut
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algorithm). For example, if a subproblem IP happens to be infeasible,

one may use combinatorial arguments to generate a “feasibility cut” to

remove the current Master Benders solution. Yet, those ideas are still

under development and may be either less general or less efficient than

desired. Those difficulties are expected considering that general IP does

not have strong duality. A significant number of recent works deal with

the special case of integer subproblems happening in the Benders decom-

position for two-stage stochastic programming (see Küçükyavuz and Sen

[2017]), for example, proposing the so-called Lagrangian Benders cuts,

like those in Chen and Luedtke [2022].

• The second major difference is practical: Benders decomposition is a more

mature technique than DW decomposition, in the sense that it already

found its way into some of the mainstream optimization software. This

is definitely not true for DW decomposition. No major commercial MIP

solver offers even automatic basic BP! Many of the most advanced BCP

algorithms of today remain research prototypes.

The authors of this book have had informal discussions with some of

the leading developers of existing commercial MIP solvers. They unan-

imously expressed that incorporating advanced BCP capabilities into

their solvers would not happen soon, due to several technical hurdles.

One of them is that the highly complex BCA codes in these solvers were

designed to handle the addition of cuts, not columns. This does not mean

that implementing Benders on those codes is easy. Far from that. As de-

scribed in Bonami et al. [2020] and Maher [2021], advanced techniques

should be used for dealing with convergence and numerical stability is-

sues, one needs to develop matrix analysis algorithms for finding the right

blocks in automatic decomposition, devising a good strategy on when

generating Benders cuts can be tricky. However, at least a new Branch-

and-Benders-Cut algorithm fits well into existing Branch-and-Cut codes.

On the contrary, incorporating BCP into an existing BC code would first

require major refactoring.

A second difficulty that currently keeps advanced BCP away from com-

mercial MIP solvers is that it would also require the additional devel-

opment of some special-purpose pricing solvers. Indeed, for many of the

most spectacular BCP successes, including vehicle routing, pricing by
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MIP is simply not efficient. Instead, advanced Dynamic Programming

labeling algorithms (Chapter 9) should be used.

4.15. Avoiding Branch-and-Price with Fenchel Cuts. Despite all the progress

made in the last decades with the so-called stabilization techniques (Chapter

7), CG is still prone to slow convergence. The issue is compounded by the

fact that in many cases the pricing may be slow. In some successful BCPAs,

like for example, Pessoa et al. [2020], spending a few seconds in each round

of pricing and a few minutes in each tree node is not unusual. The approach

may still pay if the root node bound is really strong, leading to small search

trees. In contrast, the BCAs implemented in modern MIP solvers are usually

much faster on reoptimizing nodes and can explore much larger search trees

in reasonable times. Even in cases where CG does not present convergence

issues and the pricing subproblems are easy (for example, when they corre-

spond to Knapsack Problems that can be solved in a fraction of a millisecond),

building a complete BP or BCP algorithm can be a challenging task. Current

MIP solvers do not support CG. This means that the BP/BCP may have to

be coded by the user. An extreme option is using existing solvers only for

solving LPs, with everything else being coded from scratch. Some people do

that. Happily, there are some open-source frameworks implementing BCP, like

ABACUS, BaPCod, Coluna, DIP, and SCIP GCG. However, those frameworks

are still far less developed than the best existing MIP solvers on features like

presolving, automatic cut separation, branching selection, search tree man-

agement, parallelism, and primal heuristics, among others. This means that

in many cases the initial advantage of CG in having a significantly better root

node bound will be lost due to a not-so-good BP/BCP implementation.

Those observations lead to the following question. What if one could use the

same pricing algorithm used in a CG to separate cuts and reinforce a linear

relaxation, obtaining the same strong bound that the CG would obtain? The

reinforced MIP could then be given to a MIP solver who would finish the opti-

mization. The potential advantages are big. First, each remaining node of the

search tree would require a lot less time to be solved. Second, there would be

no need for implementing a complete BP/BCP. In fact, one would be prof-

iting from all the advanced features already implemented in the MIP solver.
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On the other hand, there would be a drawback. A BP/BCP performs CG

in every node, which means that all fractional solutions along the algorithm,

even after an arbitrary number of branchings, are guaranteed to remain in the

polyhedra defined by the convex hull of the integer solutions of each subprob-

lem. This is not necessarily true in that alternative setting, which may lead to

less improvements in the bounds after each branching and larger search trees.

Anyway, it is quite possible that the aforementioned advantages more than

compensate for that drawback.

Consider an IP having the following format:

zIP = min cx (4.42a)

s.t. Ax = b (4.42b)

xu ∈ P u u ∈ [U ] (4.42c)

x ∈ Zn, (4.42d)

where bounded polyhedron P u, u ∈ [U ], is defined by a block of linear con-

straints over xu, a vector containing a subset of the variables in x. Assume

that relatively few of the n variables appear in each vector xu (although those

vectors may overlap, i.e., the same variable may appear in different vectors).

Let Qu = Int(P u), u ∈ [U ]. It is possible to obtain the bound zM = min cx

s.t. Ax = b; xu ∈ Conv(Qu), u ∈ [U ] by separating Fenchel Cuts, as proposed

in Boyd [1993, 1994], who coined that name from their relation with Fenchel

Duality 3. Given a fractional solution x∗, for each block u ∈ [U ] solve the

following Fenchel LP:

zu∗F = min αxu∗ − β (4.43a)

s.t. αq ≥ β q ∈ Qu (4.43b)

(α, β) ∈ S, (4.43c)

where xu∗ is the restriction of x∗ to vector xu and (4.43c) are normalization

constraints (in many cases simply setting β = 1 is a valid normalization). If

3Fenchel Cuts can also be viewed as coming from the equivalence between optimization and

separation [Grötschel et al., 1981] (see Note 3.14) or even from Farkas Lemma (Note 2.5)

187



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

(α∗, β∗) is an optimal solution to (4.43) with zu∗F < 0 then α∗xu ≥ β∗ is a

valid violated Fenchel Cut separating xu∗ from Conv(Qu); otherwise xu∗ ∈
Conv(Qu). Sometimes it is possible to enumerate all points q ∈ Qu and solve

(4.43) directly. If |Q|u is small, say up to a few thousand points, this is a

highly practical (and often overlooked) way of significantly strengthening a

formulation, see Santos et al. [2012] for an example.

However, more frequently, there are far too many points inQu for enumeration,

so rows (4.43b) should be generated dynamically. Given a solution (α∗, β∗) to

an LP containing only part of the constraints (4.43b), one solves the “pricing

subproblem” z∗P = minα∗xu − β∗ s.t. xu ∈ Qu. If z∗P < 0, then the inequality

in (4.43b) corresponding to the found optimal solution should be added. This

is repeated until z∗P = 0. At that moment, (α∗, β∗) is an optimal solution to

the complete LP (4.43).

Fenchel Cuts have the potential for completely replacing BP algorithms. In-

deed, one may separate them to achieve the strong bound zM at the root node

and then use a generic MIP solver to finish the optimization. Unfortunately,

this is seldom practical. The problem is a double-convergence issue: first, one

has to solve the pricing many times for generating each single Fenchel Cut;

second, several Fenchel Cuts per block may be needed for reaching bound zM.

Avella et al. [2010] is one of the rare examples where this worked fine for a

classic problem, namely, the GAP:

• In that case, the blocks correspond to the binary knapsack constraints in

the natural GAP formulation (4.16). In the tested instances, each such

knapsack constraint involved up to a few hundred variables. The direct

solution of the Fenchel LPs (4.43) turned out to be impractical due to

slow convergence. The solution was to only consider in a Fenchel LP for

block u the fractional variables, i.e., the variables xj such that 0 < x∗j < 1.

Constraints (4.43b) should consider the points in Qu in that restricted

space. In their experience, there were never more than 26 fractional vari-

ables in a block, which resulted in a much better convergence. However,

the obtained Fenchel Cut, which in principle is valid and strong only for

the restricted space, should be made valid and strong for the original

block u. This can be done by sequential lifting, solving an additional

Knapsack Problem for each non-fractional variable.
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Even with all the clever tricks employed in Avella et al. [2010], success was

only possible because the Knapsack subproblems are extremely well-solved.

As far as we know from the literature, Fenchel Cuts was never successful in

replacing a BPA in situations where the pricing subproblems are expensive.

For further discussions on the topic see Ralphs and Galati [2005], Boccia et al.

[2008], Lamothe et al. [2023].

4.16. Avoiding Branch-and-Price with DW Block Cuts. Consider again IP

(4.42). The improved bound obtained by convexifying the U blocks can also

be obtained by solving its Explicit Master by CG:

zM = min cx (4.44a)

s.t. Ax = b (4.44b)

xu =
∑
q∈Qu

q θuq u ∈ [U ] (4.44c)

∑
q∈Qu

θuq = 1 u ∈ [U ] (4.44d)

x ≥ 0, θ ≥ 0. (4.44e)

Let π, µu, u ∈ [U ], and ν be the vectors of dual variables associated with

constraints (4.44b), (4.44c), and (4.44d), respectively. The pricing subproblem

for generating θ variables in block u is c̄u∗ = min−µu∗xu − νu s.t. xu ∈ Qu.

Chen et al. [2024] proved the following result:

Theorem 4.3: Let (π∗µ1∗ . . . µU∗ ν∗) be an optimal dual solution of (4.44).

Then, its optimal solution value zM can be recovered as the value of an optimal

solution of the following LP containing valid inequalities (4.45c):

min cx (4.45a)

s.t. Ax = b (4.45b)

−µu∗xu ≥ ν∗u u ∈ [U ]. (4.45c)

It is quite surprising that a whole block of constraints can be “represented” by

a single constraint! Indeed, one can augment IP (4.42) with Constraints (4.45c)
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and give it to a MIP solver. This looks like a fantastic way of obtaining much

stronger and still compact formulations. However, there are some important

caveats:

• Explicit Master LPs are notoriously hard to solve by CG due to slow

convergence (caused by having too many dual variables).

• While Constraints (4.45c) indeed raise the linear relaxation bound to zM,

they are still a very incomplete description of polyhedra Conv(Qu), u ∈
[U ]. This means that additional cutting or branching will have trouble

on further increasing the bounds. In fact, the BCA may remain stuck at

bound zM for quite a long time, leading to a “blindness effect” similar to

(but not as extreme) the one caused by an objective function cut (Note

3.8)

Nevertheless, Chen et al. [2024] managed to obtain success with these DW

Block Cuts on the Multiple Knapsack Assignment Problem and the Temporal

Knapsack Problem. Those authors circumvent the CG convergence problems

by using the Lagrangian method Level [Lemaréchal et al., 1995] to approxi-

mately solve (4.44). The applications were chosen because they have a quite

large number of overlapping blocks. As a result, up to a few hundred DW

Block Cuts can be separated, forming a richer set of constraints that may

avoid getting stuck for a long time in solutions with value zM. Moreover, ad-

ditional techniques for improving the quality of the DW Block Cuts are also

provided. Actually, those authors define DW Block Cuts as those in format

αxu ≥ z∗ obtained by solving z∗ = minαxu s.t. xu ∈ Qu for some well-chosen

(but in principle arbitrary) vector α.

We remark that if the original IP has non-overlapping blocks, which is the

classical situation where CG is applied, one may separate strong DW Block

Cuts using the traditional DWMaster instead of the Explicit Master. Consider

an IP given by an LP in format (2.11) plus integrality constraints. After

aggregating identical subproblems, a DW decomposition yields a Master LP

in format (2.15).

Theorem 4.4: Let (π∗, ν∗) be an optimal dual solution of (2.15). Then,

its optimal solution value zM can be recovered by solving the following LP

(over aggregated aggregated original variables, like in (2.19)) containing valid
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inequalities (4.46c):

min
∑
k∈[k]

ckyk (4.46a)

s.t.
∑
k∈[K]

Akyk = b (4.46b)

(ck − π∗Ak)yk ≥ Ukν∗u k ∈ [K]. (4.46c)

Proof. Notice that zM = min
∑

k∈[k] c
kyk s.t.

∑
k∈[K]A

kyk = b, yk ∈ Uk ◦
Conv(Qk), k ∈ [K], where Uk ◦ Conv(Qk) is the polyhedron formed by the

points that can be obtained as the sum of Uk points in Conv(Qk). As 0 ≤
ck∗ = min(ck − π∗Ak)xk − ν∗u s.t. xk ∈ Qk, for every point x′ ∈ Conv(Qk)

we have that (ck − π∗Ak)x′ ≥ ν∗u. Therefore, (c
k − π∗Ak)yk ≥ Ukν∗u is valid

for Uk ◦ Conv(Qk). This already shows that the value of an optimal solution

of (4.46) can not be larger than zM. The dual of (4.46) is:

max ρb +
∑
k∈[U ]

σuU
kν∗u (4.47a)

s.t. ρAk + σu(c
k − π∗Ak) ≤ ck k ∈ [U ] (4.47b)

σ ≥ 0. (4.47c)

The solution (ρ = π∗, σ = 1) is dual feasible and thus provides a lower bound

of π∗b+
∑

k∈[U ] U
kν∗u = zM to the value of an optimal solution of (4.46).

This means that the typical CGA already provides a set of DW Block Cuts

that could used to reinforce a formulation and avoid the need for a BPA! Con-

sider the example in Section 4.1. The last pricing subproblem in the solution

of the DW reformulation of (4.7) is c∗ = min−85/27x1 − 85/27x2 + 255/27,

s.t. x ∈ Int(P ). So, the generated DW Block cut is −85/27x1 − 85/27x2 ≥
−255/27 or x1 + x2 ≤ 3. Adding this cut to (4.7) indeed increases its linear

relaxation value to zLP = −11.07 = zM. In the GAP example of Section 4.4.1,

the last pricing subproblems at S1.1 (see Figure 4.7) would generate DW Block

Cuts −7x12 − 7x13 ≥ −7 and −7x21 − 3x22 − 4x23 − 7x24 ≥ −14. In the CVRP,

after solving MLP (4.29), a single DW Block Cut (all subproblems U are iden-

tical and are aggregated) would be generated. In a similar way, in nearly all
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problems where DW decomposition is currently applied, one can perform the

standard CG only once, include the resulting DW Block Cuts in the original

formulation, and give it a MIP solver, which would start from strong bound

zM. There would be no need to build a complete BPA. Is this too good to be

true?

We experimented on seven representative GAP instances from the literature

(their names indicate the number of machines and jobs), as shown in Table 4.2.

We run Gurobi 10.0 MIP solver with a time limit of 10 minutes using a

single thread of an Apple M2 processor over its original formulation (4.16)

and over the strengthened formulation obtained by adding the K DW Block

Cuts obtained from an optimal solution of (4.18). It can be seen that the DW

Block Cuts have a disastrous effect on MIP solver performance! For example,

on C-20-200 they caused the dual bound to not move during the 10-minute

time limit. In contrast, even starting from a lower root bound, the original

formulation (4.16) solves the instance in 1 second. As additional information,

Gurobi can not solve the last three instances in that table, even in very long

runs.

Unfortunately, DW Block Cuts generated from the standard DW Master are

unlikely to work well in any problem. To explain that, we need to understand

better the differences between an Explicit Master and its corresponding DW

Master, which is done in the next note.

4.17. Explicit Master vs Dantzig-Wolfe Master. The Explicit Master (EM),

an LP containing both the original and generated variables, was used in Chap-

ter 2 and in this chapter as an intermediate step in deriving the DW decom-

position. However, a deeper exploration of the EM may provide conceptual

insights. For example, the fact that cuts over the original variables are robust

(something that was noticed only in the late 1990s, see Note 4.20) is quite

obvious in the EM. As another example, Theorem 4.1, as can be seen in its

provided proof, becomes almost self-evident when one considers the EM. How-

ever, the EM is also a practical alternative way of applying the CG technique

that has some potential advantages:

• The EM is more general and can be used in cases where the subproblems
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Table 4.2: Effect of DW Block Cuts on MIP solver performance

Instance zLP zM zIP

Original formulation without

and with DW Block Cuts

zroot best bound nodes time

C-10-200 2795.41 2803.95 2806
2803.72 opt 6127 1.22

2803.94 2804.96 969K 600

C-20-200 2376.91 2390.17 2391
2389.62 opt 2291 1.00

2390.17 2390.17 118K 600

C-20-400 4774.15 4780.18 4782
4779.33 opt 14K 11.0

4780.18 4780.18 64K 600

D-5-100 6345.41 6349.92 6353
6348.62 opt 115K 17.3

6349.92 opt 566K 53.2

D-10-100 6323.46 6341.45 6347
6334.52 6343.84 1.21M 600

6341.45 6341.45 1.19M 600

D-20-100 6142.53 6176.14 6185
6165.57 6175.40 282K 600

6176.14 6176.14 533K 600

D-25-90-e1 5566.11 5617.96 5627
5606.07 5618.97 168K 600

5617.96 5617.96 577K 600

Source: original experiment for the book.

have overlapping variables without the need for creating copies of those

variables, as discussed in Note 2.9.

• The EM allows the direct fixing of the original variables by reduced costs.

We explain the latter difference between an EM and its corresponding DWM,

as observed in Poggi de Aragão and Uchoa [2003] and Longo [2004]. By sim-

plicity, we consider an IP in format (4.1), having a single subproblem, but also

assume that P ⊂ Rn
+. The EM is:

zM = min cx (4.48a)

s.t. Ax = b (4.48b)

x −
∑
q∈Q

qλq = 0 (4.48c)

∑
q∈Q

λq = 1 (4.48d)

x, λ ≥ 0, (4.48e)
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while the corresponding DWM is (4.5). After solving (4.48) by CG one may

use the reduced costs of the x variables for fixing some of them to zero (Note

3.6). Such fixing is robust, not affecting the structure of the pricing in a BPA.

On the other hand, using those reduced costs to fix some generated λ variables

to zero is not practical: one may indeed fix them in a Restricted Master, but

unless the pricing subproblem is changed (non-robust) those fixed variables

may be generated again. Anyway, if instead one solves the DWM (4.5) then

it is not possible to fix x variables directly.

Theorem 4.5: An optimal dual solution to DWM (4.5) yields an optimal

dual solution of (4.48) where the reduced cost of all original variables x is

zero.

Proof. The dual of (4.48) is:

max π b + ν (4.49a)

s.t. πA +µ ≤ c (4.49b)

−µq + ν ≤ 0 q ∈ Q. (4.49c)

Let (π∗, ν∗) be an optimal solution to the dual of (4.5). Then (π∗, µ∗ =

(c − π∗A), ν∗) is an optimal dual solution of (4.49). Note that (4.49c) is

satisfied because (c − π∗A)q ≥ ν∗ for all q ∈ Q and that (4.49b) is satisfied

with equality. The last fact implies that for every j ∈ [n], the reduced cost

c̄j = cj − π∗aj + µ∗ = 0.

This means that the significant extra effort in solving an EM (the additional

dual variables and the existence of many alternative optimal dual solutions

lead to convergence issues) may be somehow counterbalanced by gains in

terms of fixing. Indeed, it is possible to use perturbations to guide the EM

into producing large reduced costs for a chosen subset of the x variables.

This is done by introducing slack variables in (4.49b), which is rewritten as

πA−µ+ c̄ = c, and including small positive coefficients ϵj for those variables

in the objective function (4.49a), which assumes the format maxπb+ ν + ϵc̄.

This is equivalent to adding constraints x ≥ ϵ to the primal EM (4.48).

While all this is interesting, we still do not recommend the use of the EM
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instead of the classic DWM in the more classical situations where the sub-

problems do not overlap. The reason is that, although fixing of the original

variables by reduced costs is an essential part of modern advanced BCPAs, the

fixing can often be done efficiently on the DWM using the techniques (that

require additional calls to variants of the pricing subproblem) described in

Chapter 11.

Anyway, now we can understand why DW Block Cuts generated from the

DWM (Note 4.16) are unlikely to work well. As can be seen in the proof of

Theorem 4.4, LP (4.46) has an optimal dual solution where all DW Block Cuts

have dual value 1 and all y variables have reduced cost zero (dual constraints

(4.47b) are satisfied with equality). This means that a primal solution of (4.46)

is contained in a high-dimensional face formed by alternative optimal solutions

with value zM. The overall result is a strong “blindness effect” in a MIP solver,

as bad as to the one caused by an objective function cut (Note 3.8).

4.18. Naturally decomposable LCOPs. Section 4.7.2 discussed when it can be

better to apply DW reformulation to a certain LCOP original formulation

instead of solving it directly. But there is an even deeper question. Which

LCOPs themselves are more suitable to CG-based methods? The first thing

to consider is whether the LCOP solutions can be decomposed into higher-

level objects. For example, vehicle routing solutions are naturally decomposed

into routes. Those routes are independent of each other, except for the fact

that together they should visit each customer once. CSP solutions are decom-

posable into uses of cutting patterns, GAP solutions are decomposable into

individual machine assignments, and GCP solutions are decomposable into

independent sets. These higher-level objects in the solution structure explain

the existence of MIP formulations that, after a suitable DW reformulation,

lead to multiple independent subproblems, being more favorable to CG. Of

course, success also depends on the structure of the resulting subproblems,

which should permit efficient pricing.

Many LCOPs are not naturally decomposable. For example, TSP solutions do

not seem to admit decomposition into objects larger than individual edges/arcs.

However, there are many non-decomposable LCOPs where the removal of part

of the constraints leads to a relaxed LCOP with a nice structure, being much
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easier than the original LCOP. For example, the Held-Karp 1-tree relaxation

for the TSP (Section 5.4.1). In many of those cases, CG is better replaced

with Lagrangian Relaxation methods. However, when cutting is necessary to

obtain strong bounds, CG may still be recommended (see Section 5.5 for

an in-depth discussion). As an example, Abeledo et al. [2013], Roberti and

Mingozzi [2014], Bulhões et al. [2018] use CG for the Traveling Deliveryman

Problem (a.k.a. Cumulative TSP, Time-dependent TSP or Minimum Latency

Problem), a problem that is not decomposable but relaxable. The adopted re-

laxations were q-routes without s-cycles in Abeledo et al. [2013] and dynamic

ng-routes in the latter works.

4.19. Early Branch-and-Price algorithms. After Gilmore and Gomory [1961,

1963], several successful CG-based algorithms were soon proposed, not only

for cutting and packing but also for other problems. Those algorithms mostly

solve the Master LP and use a rounding heuristic to produce integer solu-

tions. Some examples include works by Dzielinski and Gomory [1965] for a

lot-sizing problem and by Rao and Zionts [1968] for a transportation units

routing problem. Levin [1968] formulates an airline fleet scheduling problem

as a multi-commodity flow problem, then reformulates it as a set covering

problem and describes a column generation algorithm combined with a hy-

pothetical (i.e., not implemented) branch-and-bound, where branching is per-

formed on arc variables. Simpson [1969] describes a Dantzig-Wolfe decompo-

sition for a multi-period fleet assignment model without discussing ways to

obtain integer solutions. Appelgren [1969] treats a ship scheduling problem in

which a sequence of cargo transportation requests should be assigned to each

ship, and the total profit from optional requests minus the assignment cost is

maximized. The solutions obtained by a CGA (the pricing subproblems were

solved by DP) were integer on almost all practical instances with up to 40

ships and 50 cargos. In a subsequent paper for the same problem, Appelgren

[1971] considers how to optimally solve the relatively few remaining fractional

instances. He first implemented a cutting plane algorithm, adding non-robust

cuts. Ten out of the 12 tested instances could be solved with a single cut.

However, after realizing the potential limitations of the method, an algorithm

combining column generation with the BBA was proposed. It was observed
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that branching on the MLP variables would also change the structure of the

pricing subproblem, making it much harder. Instead, he proposed a robust

branching on ship-cargo pairs (equivalent to branching over original binary

variables xsc indicating whether ship s takes cargo c). All the tested instances

could be optimally solved. Due to the very strong root bounds, the largest

search tree only had 11 nodes. To our knowledge, Applegren [1971] is the first

Branch-and-Price algorithm.

Yet, that work had little immediate influence and we did not find other full

BPAs in the literature until the mid-1980s. Of course, CG was still being used

in several applications, including routing and scheduling applications, most

importantly for airline optimization, but in a heuristic way. It seems that

CG practitioners at that time considered optimal solutions either unnecessary

(because the heuristic solutions were good enough) or hopelessly difficult to

find. For example, Foster and Ryan [1976] discusses the column generation

approach for a vehicle routing problem: “Unfortunately, it is very slow to

converge and rarely gives rise to integer or near integer solutions at the LP

optimum. Hence significant computation is required to achieve integrality and

optimality. Despite its optimal properties it may therefore only be considered as

attractive as a practical method for very small problems.” They then proceed

by heuristically restricting the set of feasible routes to only “petal” routes.

This restriction allows them to converge much faster and reduce drastically the

fractionality of the obtained LP solution. A comprehensive survey on routing

and scheduling by Raff [1983] lists some approaches that perform pricing but

not a single BPA.

The first BPA for a vehicle routing problem was proposed in Desrosiers et al.

[1984] for a VRPTW-like variant without capacity constraints. In that vari-

ant, the customers to be serviced by the vehicles are actually trips from fixed

origin and destination points. That BPA already used the equivalent of the

q-route relaxation and the subproblems were solved by a labeling dynamic

programming algorithm. The branching scheme was non-binary (i.e., more

than two children nodes could be generated) but robust. The computational

results were impressive, solving instances with up to 151 customers. As ac-

knowledged by the authors, those excellent results were possible because the

time windows were very narrow (which makes the root lower bounds very
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tight) and the number of customers per route was small, usually less than

four (which makes convergence quick).

That seminal work spurred the first wave of BPAs for time-constrained routing

and scheduling problems, as surveyed in Desrosiers et al. [1995]. The “Mon-

treal Group” created several successful BPAs for problems like Urban Transit

Crew Scheduling [Desrochers and Soumis, 1989], Pickup and Delivery with

TW [Dumas et al., 1991], VRPTW [Desrochers et al., 1992], Multiple-Depot

Vehicle Scheduling [Ribeiro and Soumis, 1994], Door-to-Door Handicapped

Transportation [Ioachim et al., 1995]. Many of those BPAs were implemented

over the GENCOL framework, which could handle Master problems hav-

ing Set-Partitioning constraints and subproblems cast as resource-constrained

shortest-path problems.

Other influential early BPAs include: CVRP [Agarwal et al., 1989], Min-Cut

Clustering [Johnson et al., 1993], Bandwidth Packing [Parker and Ryan, 1993],

BPP [Vance et al., 1994], Graph Coloring [Mehrotra and Trick, 1996], GAP

[Savelsbergh, 1997], and CSP [Vance, 1998].

4.20. Early Branch-Cut-and-Price algorithms. The first BCPA was proposed

in Nemhauser and Park [1991] for the edge coloring problem. The columns

correspond to matchings in the graph and, at the beginning of the algorithm,

can be priced in polynomial time. However, after non-robust Odd-Cycle cuts

are added, the pricing subproblem has to be solved by a general MIP solver.

As can be seen in the comprehensive survey and exposition on BPAs by Barn-

hart et al. [1998], in the mid-1990s it was not yet clear which kind of cuts could

be used in a BCPA without the undesirable effect of changing the structure of

the pricing subproblems. Then, several researchers independently created the

first robust BCPAs (Lot Sizing [Vanderbeck, 1998], Package Delivery [Kim

et al., 1999], VRPTW [Kohl et al., 1999], Machine Scheduling [van den Akker

et al., 2000], Supply Change Management [Felici et al., 2000], and Integer

Multi-commodity Flow [Barnhart et al., 2000] ) by realizing that the dual

variables of cuts defined over the variables from an original formulation only

affected the subproblems costs, not their structure.

The classification of BCPAs as being robust or non-robust was proposed in
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Poggi de Aragão and Uchoa [2003]. That nomenclature was intended to cap-

ture a distinction that was observed by researchers at that time: even when a

pricing algorithm could be adapted for handling non-robust cuts, its perfor-

mance often became very unstable. That work also championed robust BCPAs:

“Perhaps an important contribution is simply to point out the vast potential

impact that BCP algorithms represent in the practice of integer programming.

Up to now, BCP was only applied to (a few) problems where a pure BP already

performed well. We argue that the applicability of this technique goes far be-

yond that class of problems”. The proof of the concept was the robust BCPA

for the CVRP in Fukasawa et al. [2006]. BPAs were already known to be good

for the VRPTW with narrow time windows, but they performed poorly on

the CVRP (which can be seen as a VRPTW with wide time windows). BCAs

were then viewed as the clearly best approach for CVRP (see Section 3.4.2).

Table 4.3, taken from Fukasawa et al. [2006], shows the average gaps over a set

of 41 instances having from 49 to 134 customers by the following relaxations:

the master LP (4.29) solved by a CG pricing q-routes without 2-cycles, the lin-

ear relaxation of Edge Formulation (3.6) including the separation of all cuts in

Lysgaard et al. [2004], and their synergetic robust cut-and-price combination,

for q-routes without s-cycles, s ∈ {2, 3, 4}. The much improved cut-and-price

bounds (remember that BBA trees grow exponentially with the gap) allowed

all the 18 open instances in that set to be solved.

Table 4.3: CG alone vs Cut Separation alone vs their combination

CG s = 2 Edge CG s = 2 CG s = 3 CG s = 4

+ Cuts + Cuts + Cuts + Cuts

Gap 4.76% 2.26% 0.97% 0.82% 0.74%

Source: Fukasawa et al. [2006].

The enthusiasm for robust BCPAs decreased in the following years. It was soon

realized that further progress would depend on finding new effective families of

robust cuts, which is not an easy task. Note that even families of cuts that are

facet-defining may be useless in a robust BCPA if they are already implied

by the CG (i.e., by the partial convexification induced by the DW decom-

position). For example, Letchford and Salazar-González [2006] proved that
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CVRP Generalized Multistar Cuts are already implied by q-routes. In that

context, robust BCPAs that exploited cuts defined over pseudo-polynomial

extended formulations were proposed: Capacitated Minimum Spanning Tree

[Uchoa et al., 2008] and Parallel Machine Scheduling [Pessoa et al., 2010]. This

is a potentially powerful approach. The large number of variables in those ex-

tended formulations makes it easier to find new families of robust cuts. Yet,

the bulky original formulation is essentially hidden by the CG approach.

Meanwhile, other works [Jepsen et al., 2008, Baldacci et al., 2008, 2011] have

shown the decisive importance of non-robust cuts for obtaining really small

gaps on some important problems and proposed techniques for mitigating their

non-robustness. This led in the 2010s to the modern advanced BCPAs that

use both robust and “controlled non-robust” cutting, which will be covered

in detail in Part Two of this book. Other techniques that are characteristic

of those advanced BCPAs include dual stabilization, numerically safe dual

bounds, efficient fixing by Lagrangian reduced costs, active fixing, the possi-

bility of going back to the reduced original formulation, column enumeration

to pools, integrated primal heuristics, MLP management, advanced branch

rules, hierarchical strong branching, and non-robustness control by rollback.

Special care is given to designing the pricing algorithms. Indeed, cutting and

pricing may achieve a degree of symbiosis, in the sense that the non-robust

cuts are already defined with the pricing algorithm in mind, to minimize their

negative impact on its performance.

4.21. Branch-Cut-and-Price or Branch-Price-and-Cut? The name Branch-

and -Cut-and-Price, often found in the late 1990s and early 2000s literature,

was disrecommended by native speakers [Letchford, 2005] as bad English.

However, some authors prefer the name Branch-Price-and-Cut because, as

explained in Desrosiers and Lübbecke [2011], it better reflects the algorithm:

first columns are priced, and only after that, cuts start to be separated. By

that reasoning, Price-Cut-and-Branch would be an even better name! Anyway,

in this book we still adopt the more historical name Branch-Cut-and-Price.
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Exercises

E4.1. Consider the IP shown in Exercise E 3.1 (page 109). Perform a DW re-

formulation that keeps the first constraint in the master (leading to two

independent subproblems) and solve the resulting IP by a robust BPA with

branching over the original variables (the resulting constraints should be

kept in the master). Choose the branching variable by the most fractional

rule. Show the BPA tree in detail, like in Figure 4.7.

E4.2. Solve the same IP using a BPA with branching over the original variables

but including the resulting constraints in the subproblems (see Note 4.3).

E4.3. Solve the same IP using a robust BCPA, separating the following valid

inequalities to cut the fractional solutions: x2 + x3 − x4 ≤ −1 and −x2 +
x3 + x4 ≤ 5.

E4.4. Solve the same IP using a non-robust BPA that performs branching over

the generated variables. Show the required modifications in the pricing

subproblems.

E4.5. Solve the same IP using a non-robust BCPA that separates CG cuts at

the root node. Show the required modifications in the pricing subproblems.

Suggestion: use multipliers ρ = (0.1 0.6 0.09) for the constraint kept in the

master and for the first and second convexity constraints, respectively.

Hint: when in trouble finding CG multipliers for moderate-sized problems,

try the MIP in Fischetti and Lodi [2007].

E4.6. Write the general MLP that is obtained by a DW reformulation of a

MIP in format (4.8) that keeps (4.8b) in the master, assuming that P is

bounded.
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E4.7. Solve the following GAP instance by a robust BPA that performs branch-

ing over the original variables:

Cost (ckj ) Load (wk
j ) Wk

Jobs 1 2 3 1 2 3

Machines
1 1 8 7 7 3 4 9
2 6 2 5 3 7 4 8

E4.8. Consider the following problem:

Definition 4.14: Capacitated Facility Location Problem (CFLP).

Instance: J customers and K locations; integer customer demands wj , j ∈
[J ]; opening costs gk and integer capacities Wk, k ∈ [K]; and assignment

costs ckj , j ∈ [J ], k ∈ [K]. Solutions: Set K ′ ⊆ K of open locations and

assignments of customers to locations in K ′ such that the total demand in

each location does not exceed its capacity. Goal: minimize opening costs

plus assignment costs.

The natural formulation for CFLP uses binary variables yk to indicate

whether location k is opened and binary variables xkj to indicate whether

customer j is assigned to location k:

zIP = min
∑
k∈[K]

∑
j∈[J ]

ckjx
k
j +

∑
k∈[K]

gkyk (4.50a)

s.t.
∑
k∈[K]

xkj = 1 j ∈ [J ] (4.50b)

∑
j∈[J ]

wjx
k
j ≤Wkyk k ∈ [K] (4.50c)

(x,y) ∈ BJK+K . (4.50d)

Perform a DW reformulation on it that keeps (4.50b) in the master. Write

the resulting MLP and the pricing subproblems.

E4.9. Solve the linear relaxation of the KGG formulation for the following CSP
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instance: W = 132, w = ( 44 33 12 ), and d = ( 2 3 6 ). Solve it again, but

this time use a bounded KP in the pricing, forbidding non-proper cutting

patterns, i.e., those where the number of copies of some item is larger than

its demand. Find a proven optimal integer solution.

E4.10. In the CSP with Multiple Stock Sizes there areK different stock lengths,

stock k ∈ [K] having integer length Wk and unitary cost gk. The problem

was already formulated both in Kantorovich [1939] and in Gilmore and

Gomory [1961] in terms of cutting pattern variables. Provide an original

formulation for that problem similar to (4.23). Perform a DW reformulation

of it and derive, step by step, the KGG formulation.

E4.11. Generalize Valério de Carvalho’s pseudo-polynomial flow formulation

for the CSP with multiple stock sizes. Hint: start from Formulation (4.33)

for the maximum stock length and only add K − 1 arcs.

E4.12. The Bin Packing with Conflicts is a BPP variant that includes a conflict

graph G = ([J ], E). If (i, j) ∈ E, items i and j can not be packed in the

same bin. The problem can be viewed as a mix between the classic BPP

and the Graph Coloring Problem. In fact, if W =∞ it becomes a GCP; if

E = ∅ it becomes the BPP. Propose an original formulation for the problem

akin to formulations (4.23) and (4.31). Then perform a DW reformulation

over it to obtain an IP suitable for CG.

E4.13. Consider a MLP in the following format:

zM = min
∑
k∈[K]

∑
q∈Qk

gkλ
k
q (4.51a)

s.t.
∑
k∈[K]

∑
q∈Qk

(Akq)λk
q = b (4.51b)

λ ≥ 0. (4.51c)

The format includes the CSP with multiple stock sizes, gk being the cost
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of stock size k ∈ [K]. Generalize Farley’s bound (Note 4.13) for that case.

In other words, given a RMLP with optimal value zRM and optimal sub-

problem values ck∗, k ∈ [K], obtain a formula giving a proven lower bound

on zM.

E4.14. Consider a MLP in format (4.39) but also having the convexity con-

straint
∑

q∈Q λq = U . Generalize Farley’s bound (Note 4.13) for that case.

Hint: the optimal dual variable value ν∗ of the convexity constraint in the

RMLP should be used in the formula.

E4.15. Project Exercise. Implement (perhaps using a CG framework) a gen-

eral robust BPA for the GAP that performs branching over the original

variables. Include in your tests instances with many machines, like those

in Nauss [2003]. Compare your results with those from the literature and

with the direct solution of original Formulation (4.16) by a MIP solver.

E4.16. Project Exercise. Implement a general robust BPA for the CFLP

that performs branching over the original variables. Include in your tests

instances having many locations with small capacities. Compare your re-

sults with those from the literature and with solving Formulation (4.50)

with a MIP solver.

E4.17. Project Exercise. Implement a general robust BPA for the Graph

Coloring Problem that performs RFB branching, as in Mehrotra and Trick

[1996]. Use the ISP/MWCP codes mentioned in Note 4.7 for the pricing.

Compare your results with those from the literature and with the direct

solution of the original Formulation (3.4) by a MIP solver.

E4.18. Project Exercise. Implement a BPA for the Rectangular Partition

problem described in Exercise E 3.4. You should write the code for solving

the pricing subproblem and define a suitable branching scheme. Perform

tests on two sets of instances: the first with L = W = 20 and the second
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with L = W = 50. In both cases, the points can be randomly selected.

Compare your implementation with solving the full SPP formulation with

a MIP solver.
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Chapter 5

Lagrangian Relaxation and
Column Generation

We present the link between Column Generation and a well-known and very general

optimization technique: Lagrangian Relaxation (LR). Applications of LR range from

elementary calculus to sophisticated algorithms for solving complex constrained

non-linear problems. Dantzig-Wolfe decomposition and CG can be derived from

scratch as an application of LR to LPs/IPs. To follow a philosophy adopted in this

book, that readers may be able to choose their preferred point of view, we should

present that alternative to the CG derivation given in the Chapters 2 and 4. In

addition, the resulting Lagrangian Dual Problems have a graphical representation

that brings insight into how the CGA works. The LR link is particularly valuable for

understanding the stabilization and advanced variable fixing techniques that will be

presented in Chapters 7 and 11, respectively. Moreover, we also provide guidelines

on when Lagrangian methods are likely to be a good alternative for replacing CG.

5.1. General Lagrangian Relaxation
LR was originally developed at the beginning of the 19th century to solve con-

strained variational calculus problems [Lagrange, 1806]. However, the surprisingly

simple ideas that it uses allow it to be presented in this section without compro-

mising the focus of this book.
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5.1.1. Basic Results
LR is suitable for optimization problems that become much easier when a certain

subset of its constraints is relaxed. Instead of simply ignoring those constraints, the

LR method adds to the objective function their violations multiplied by adjustable

factors known as Lagrangian multipliers. This is done in the hope that those pe-

nalization terms may guide the optimal solution to a region that is feasible for

the original problem. In reality, the problem with relaxed constraints and modified

objective function should be much easier than the original problem. To formalize

this notion, let X ⊆ Rn be a (possibly infinite) non-empty set of points, and let

c : X 7→ R, g : X 7→ Rm, and h : X 7→ Rr be functions defined over such points.

The general problem considered here is the following:

min z = c(x) (5.1a)

s.t. g(x) = 0 (5.1b)

h(x) ≤ 0 (5.1c)

x ∈ X. (5.1d)

The LR is applied by keeping (5.1d), while Constraints (5.1b) and (5.1c) are dualized,

i.e., they are moved to the objective function as penalization terms. For any fixed

Lagrangian multipliers π ∈ R1×m and ρ ∈ R1×r
+ , let L(x,π,ρ) = c(x) + π g(x) +

ρh(x) and define the Lagrangian Subproblem (LS) as:

min L(x,π,ρ) (5.2a)

s.t. x ∈ X. (5.2b)

The resolution of LSs for fixed multipliers defines a function that maps the pos-

sible Lagrangian multipliers into the corresponding optimal value of (5.2). The

Lagrangian Dual Function (LDF) L(π,ρ) = minx∈X L(x,π,ρ) has as its proper

domain the possible multipliers where this minimum is not unbounded. To avoid

technicalities, we keep the convention used throughout this book and define L(π,ρ)

for all possible multipliers, saying that L(π,ρ) = −∞ if the minimum is unbounded.

Theorem 5.1: The LDF L(π,ρ) is concave over its proper domain.
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Proof. For each fixed x ∈ X, L(x,π,ρ) = c(x) + π g(x) + ρh(x) is a linear

function of π and ρ. Hence, the finite value L(π,ρ) = minx∈X L(x,π,ρ) is the

pointwise minimum of a number (possibly infinite) of linear functions. Thus, it is

concave (but not necessarily strictly concave).

An LDF L(π,ρ) is piecewise linear if it can be defined over its proper domain

as the pointwise minimum of a finite number of linear functions L(x,π,ρ), x ∈ Y ,

for some finite Y ⊆ X. As will be seen, applications of LR to linear or integer

programming lead to piecewise linear LDFs, whereas non-linear programming ap-

plications typically do not. The hypograph of a function is the set of points lying

on or below its graph, over its proper domain, see the examples depicted in Figures

5.2 and 5.3a. In the latter example, the LDF is piecewise linear and its hypograph

is a polyhedron.

Theorem 5.2: Weak duality. Let x′ be a feasible solution of (5.1). For any

π ∈ R1×m, ρ ∈ R1×r
+ , L(π,ρ) ≤ c(x′).

Proof. The proof can be written in one line:

L(π,ρ) = min
x∈X

L(x,π,ρ) ≤ L(x′,π,ρ) = c(x′) + π g(x′) + ρh(x′) ≤ c(x′).

The first and the second equalities hold by the definitions of L(π,ρ) and L(x,π,ρ),

respectively. The first inequality is true because x′ satisfies (5.1d). Since ρ ≥ 0 and

x′ also satisfies both (5.1b) and (5.1c), second inequality also holds.

The fundamental Theorem 5.2 shows that if (5.1) has an optimal solution x∗

with value c(x∗) = z∗, then LR can be used to provide lower bounds on z∗. Since

these lower bounds are parameterized by the vectors π and ρ, it is natural to ask

for the best possible lower bound that can be obtained in this way. For that, the

Lagrangian Dual Problem (LDP) is defined as follows:

zLD = max L(π,ρ) (5.3a)

s.t. π ∈ R1×m, ρ ∈ R1×r
+ . (5.3b)

In general, LDPs do not provide strong duality. Indeed, there are many cases where

zLD < z∗. The following result indicates a situation where strong duality holds.
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Theorem 5.3: Given π ∈ R1×m, ρ ∈ R1×r
+ , and x̄ = argminx∈X L(x,π,ρ), if

g(x̄) = 0, h(x̄) ≤ 0, and ρh(x̄) = 0 then c(x̄) = L(π,ρ) = zLD = z∗.

Proof. z∗ ≤ c(x̄) = c(x̄) + π g(x̄) + ρh(x̄) = L(π,ρ) ≤ zLD ≤ z∗. The first

inequality is valid because the conditions of the theorem impose that x̄ is feasible

for the original problem (5.1). The first and the second equalities are true because

πg(x̄) = ρh(x̄) = 0 and by the definition of L(π,ρ), respectively. The second

inequality holds by definition of zLD. The last inequality follows from Theorem

5.2.

This means that a solution to an LS that is feasible to the original problem is also

optimal if the “complementary slackness” (see Theorem 1.4) conditions ρh(x̄) = 0

are satisfied.

To illustrate the concepts presented so far, consider the following problem with

a non-linear objective function:

min z =
1

x1
+

1

x2
(5.4a)

s.t. x1 +4x2 ≤ 8 (5.4b)

x1, x2 > 0. (5.4c)

Dualizing Constraint (5.4b), for any fixed ρ ∈ R+ we have the following Lagrangian

Subproblem1:

min L(x1, x2, ρ) =
1

x1
+

1

x2
+ ρ(x1 + 4x2 − 8) (5.5a)

s.t. x1, x2 > 0, (5.5b)

This LS can be decomposed into two independent problems: P1 ≡ minx1>0{1/x1 +
ρx1}, and P2 ≡ minx2>0{1/x2+4ρx2}. In this case, elementary calculus can be used

to solve both P1 and P2 analytically as a function of ρ > 0. Since both functions

are strictly convex for fixed ρ, their minimum values are attained in the only point

where the derivative with respect to x1 or x2 is zero. Let x̄1 = 1/
√
ρ and x̄2 =

1Technically, we should have used “inf” instead of “min” in (5.5a) because the problem has no

optimal value when ρ = 0.

210



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

1/(2
√
ρ) be the optimal solutions for P1 and P2, respectively. Then, we obtain

that L(ρ) = L(x̄1, x̄2, ρ) = 6
√
ρ − 8ρ defines the Lagrangian Dual Function. Since

that function is strictly concave, its maximum value is attained at the only point

ρ∗ = 9/64 = 0.1406 where the derivative (now with respect to ρ) is zero. Hence,

the best lower bound on the optimal solution of (5.4) that the Lagrangian approach

can provide is zLD = L(ρ∗) = 9/8 = 1.125.

In this particular example, LR may do more than provide a valid lower bound.

Solving the LS with ρ = ρ∗ leads to a solution x̄ = (x̄1 x̄2) = (8/3 4/3) =

(2.666 1.333) that turns out to be feasible for the original problem (x̄1 + 4x̄2 = 8)

and also satisfies the other conditions in Theorem 5.3. Therefore, c(x̄) = L(ρ∗) and

x∗ = x̄ is optimal for (5.4). Figure 5.1a displays contour lines of the original objec-

tive function (5.4a), showing that the green contour line corresponding to z = 1.125

only intersects the feasible region (depicted in gray) at the point x∗. If Constraint

(5.4b) is simply relaxed, the resulting problem has no optimal solution because z

approaches zero as both x1 and x2 go to infinity. However, if that constraint is in-

corporated into the objective function with penalization ρ∗ = 9/64, the resulting LS

L(x1, x2, ρ
∗) has as its unique minimum solution the point x∗ (some of its contour

lines are depicted in Figure 5.1b).

z = 2.0
z = 1.5

z = 1.125
z = 0.9

x∗

x1

x2

(a) Contour lines of z = 1/x1 + 1/x2 and
the feasible region of the original problem.

x∗

w = 2.0

w = 1.5

w = 1.2

w = 1.125

x1

x2

(b) Contour lines of w = L(x1, x2, ρ
∗).

Figure 5.1: The effect of dualizing the constraint x1+4x2 ≤ 8 in (5.4) with multiplier
ρ∗ = 9/64

Figure 5.2 depicts L(ρ) = 6
√
ρ− 8ρ, which, according to the proof of Theorem

5.1, is the pointwise minimum of an infinite number of linear functions, one for

each point (x1, x2) > 0. The graph displays the lines corresponding to four selected

points: x1 = (4, 2), x2 = (8/3, 4/3), x3 = (1.4, 0.7), and x4 = (1, 2). For example,
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the point x1 leads to the line L(x1, ρ) = 3/4+4ρ, which intersects L(ρ) at (1/16, 1).

This means that x1 is an optimal solution of (5.5) for ρ = 1/16. Point x2 corresponds

to the line L(x2, ρ) = 9/8, which intersects L(ρ) at its maximum. The line L(x3, ρ) =

15/7 − 3.8ρ also intersects L(ρ). On the other hand, the line L(x4, ρ) = 3/2 + ρ

does not touch L(ρ) (so, x4 is never an optimal solution of (5.5)) and is redundant

in the definition of this LDF.

(4
,
2
)

(1
, 2
)

( 8
3
, 4
3
)

(1
.4
,
0
.7
)

1

1

ρ∗ ρ

L(ρ)

Figure 5.2: LDF L(ρ) = 6
√
ρ − 8ρ and the lines L(x1, x2, ρ) associated with some

fixed points (x1, x2) > 0. The hypograph of L(ρ) is shaded in blue.

5.1.2. Deriving standard LP duality with LR
It is instructive to apply LR to general LP. Consider an LP in the following format:

min cx (5.6a)

s.t. Ax ≥ b (5.6b)

x ≥ 0. (5.6c)

212



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

By dualizing (5.6b), which is equivalent to b−Ax ≤ 0, the LS for any fixed ρ ≥ 0

is:

min L(x,ρ) = cx+ ρ(b−Ax) = (c− ρA)x+ ρb (5.7a)

s.t. x ≥ 0. (5.7b)

If the vector c − ρA has a negative component, say the i-th one, then (5.7) is

unbounded because xi can go to infinity. So, the proper domain of the LDF L(ρ)

only contains points ρ such that c − ρA ≥ 0. Thus, the optimal solution value of

the corresponding LDP does not change if c − ρA ≥ 0 is included as a constraint

in it. Note that x∗ = 0 is always an optimal solution of (5.7) when c − ρA ≥ 0,

which implies that L(ρ) = L(x∗,ρ) = ρb. So, the resulting LDP becomes:

max ρb (5.8a)

s.t. ρA ≤ c (5.8b)

ρ ≥ 0, (5.8c)

which is precisely the LP dual of (5.6). As a result, Theorem 5.2 proves LP weak

duality. Yet, as far as we know, no one could prove LP strong duality using only

basic LR. The standard proofs of Theorem 2.12 use more advanced results like

Farkas’ Lemma or the correctness of the Simplex algorithm.

5.2. DW Reformulation for IP as LR
The DW reformulation for IP can be derived using LR. We start with the simplest

case where there is a single subproblem, and then, follow the same steps for multiple

subproblems partitioned into groups of identical problems. The resulting LDPs have

a graphical representation that brings valuable insights into how the CGA works.

We generalize Theorems 2.6 and 2.8, opening the way for hybrid CG approaches

where the pricing subproblems are sometimes solved with dual values that are not

necessarily those provided by RMLPs.
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5.2.1. Single Subproblem
Consider the following IP:

zIP = min cx (5.9a)

s.t. Ax = b (5.9b)

Dx ≥ d (5.9c)

x ∈ P (5.9d)

x ∈ Zn, (5.9e)

where A and D have dimensions m × n and r × n, respectively; the other vectors

have compatible dimensions. Moreover, P is a bounded polyhedron defined by a set

of linear constraints. By adding surplus variables to Constraints (5.9c), they could

be converted to equalities and incorporated into (5.9b), resulting in a formulation in

the form of (4.1). Here, however, we follow what is more frequent in the LR literature

and keep equality and inequality constraints separated. Dualizing Constraints (5.9b)

and (5.9c), we obtain from (5.9) the following LS for any fixed π ∈ R1×m, and

ρ ∈ R1×r
+ :

min L(x,π,ρ) = cx+ π(b−Ax) + ρ(d−Dx) (5.10a)

s.t. x ∈ P (5.10b)

x ∈ Zn. (5.10c)

Let Q = Int(P ). We can rewrite (5.10) as minq∈Q{cq + π(b−Aq) + ρ(d−Dq)}.
Then, the LDP becomes:

zLD = max L(π,ρ) = min
q∈Q
{cq + π(b−Aq) + ρ(d−Dq)} (5.11a)

s.t. π ∈ R1×m (5.11b)

ρ ∈ R1×r
+ . (5.11c)
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Introducing an auxiliary variable z to represent the value of L(π,ρ), the LDP can

be rewritten as:

zLD = max z (5.12a)

s.t. z ≤ cq + π(b−Aq) + ρ(d−Dq) q ∈ Q (5.12b)

z ∈ R (5.12c)

π ∈ R1×m (5.12d)

ρ ∈ R1×r
+ , (5.12e)

As we show later in this section, this form is suitable for a graphical visualization of

L(π,ρ). However, to establish the link between LR and CG, we use here a slightly

modified form. Let ν ∈ R be a new variable defined as:

ν = z − πb− ρd. (5.13)

We use it to eliminate the z variable from (5.12) by substituting it with ν+πb+ρd.

Then, (5.12) becomes:

zLD = max ν + πb+ ρd (5.14a)

s.t. ν ≤ cq − πAq − ρDq q ∈ Q (5.14b)

ν ∈ R (5.14c)

π ∈ R1×m (5.14d)

ρ ∈ R1×r
+ . (5.14e)

Note that the last variable change removes the influence of the terms πb and ρd

over Constraints (5.12b). Let λ be the vector of dual variables associated with
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Constraints (5.14b). The dual LP of (5.14) is:

zM = min
∑
q∈Q

(cq)λq (5.15a)

s.t.
∑
q∈Q

(Aq)λq = b (5.15b)

∑
q∈Q

(Dq)λq ≥ d (5.15c)

∑
q∈Q

λq = 1 (5.15d)

λ ≥ 0, (5.15e)

which is precisely the MLP obtained from the DW decomposition of (5.9) that keeps

(5.9b) in the master. We have just proved that zLD = zM ≤ zIP. Moreover, it can

be deduced from Theorem 4.1 that zLD can only be larger than zLP, the bound

obtained by the IP linear relaxation, if P does not have the integrality property.

Actually, that result on the strength of zLD was originally proved for LR applied to

IP [Geoffrion, 1974]. Only later it was realized that it also applies to CG [Magnanti

et al., 1976].

Consider the Restricted Master LP obtained from (5.15) by only having the

subset of the λ variables corresponding to some S ⊆ Q:

zRM = min
∑
q∈S

(cq)λq (5.16a)

s.t.
∑
q∈S

(Aq)λq = b (5.16b)

∑
q∈S

(Dq)λq ≥ d (5.16c)

∑
q∈S

λq = 1 (5.16d)

λ ≥ 0, (5.16e)

Let (π∗,ρ∗, ν∗) be an optimal dual solution for it. The corresponding pricing sub-
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problem is given by:

c∗ = min (c− π∗A− ρ∗D)x− ν∗ (5.17a)

s.t. x ∈ P. (5.17b)

Theorem 2.6 states that zRM + c∗ is a valid lower bound on zM. The next result

shows that such a bound can be viewed as a Lagrangian bound:

Theorem 5.4: If (π∗,ρ∗, ν∗) is an optimal dual solution for (5.16), then zRM +

c∗ = L(π∗,ρ∗).

Proof. The pricing subproblem (5.17) and the LS (5.10) are the same except for a

constant term in the objective function, which is −ν∗ for the former and π∗b+ρ∗d

for the latter. Let x̂ be an optimal solution to both subproblems. Then,

L(π∗,ρ∗) = L(x̂,π∗,ρ∗) = cx̂+ π∗(b−Ax̂) + ρ∗(d−Dx̂)

= (c− π∗A− ρ∗D)x̂+ π∗b+ ρ∗d

= (c− π∗A− ρ∗D)x̂+ zRM − ν∗ = zRM + c∗,

where the last but one equality holds because, by strong LP duality, zRM = π∗b+

ρ∗d+ ν∗.

We give an example that will graphically illustrate the interpretation of the

CGA as a method for optimally solving an LDP. Consider the following IP:

zIP = min x1 + 3x2

s.t. −x1 + x2 ≥ −1
x1 + 6x2 ≤ 12

2x1 + 4x2 ≥ 5

0 ≤ x1 ≤ 3

x ∈ Z2.

(5.18)

Its linear relaxation has value zLP = 3, while zIP = 4. By dualizing its first con-
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straint, the obtained LS for fixed ρ ≥ 0 is:

min L(x1,x2, ρ) = x1 + 3x2 + ρ(−1 + x1 − x2) (5.19a)

s.t. x1 + 6x2 ≤ 12 (5.19b)

2x1 + 4x2 ≥ 5 (5.19c)

0 ≤ x1 ≤ 3 (5.19d)

x ∈ Z2. (5.19e)

Its set of solutions is Q = {(0, 2), (1, 1), (2, 1), (3, 0), (3, 1)}. So, the LDP (in format

(5.12)) becomes:

zLD = max z (5.20a)

s.t. z ≤ 6− 3ρ (5.20b)

z ≤ 4− ρ (5.20c)

z ≤ 5 (5.20d)

z ≤ 3 + 2ρ (5.20e)

z ≤ 6 + ρ (5.20f)

ρ ≥ 0. (5.20g)

The graph of the LDF L(ρ) is depicted in Figure 5.3a. It can be seen that

for 0 ≤ ρ < 1/3 the unique optimal solution of (5.19) is (3, 0); for ρ = 1/3 the

optimal solutions are (3, 0), and (1, 1); for 1/3 < ρ < 1 the optimal solution is

(1, 1); and so on. The lines corresponding to the points (2, 1) and (3, 1) do not

touch L(ρ), therefore, those points are never optimal solutions of (5.19). The value

zLD = 11/3 = 3.66 is achieved with ρ∗ = 1/3.

We will now perform a DW reformulation of (5.18), keeping its first constraint in

the master, and then apply the CGA. We need an artificial variable a1 for building

the first feasible RMLP. That particular artificial variable is equivalent to adding

the point (0, 0) to Q, but with a “very large” cost (to keep the visualization neater,
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(3
, 0
)

(0
, 2
)

(1, 1)

(2, 1)

(3
, 1
)

ρ∗ = 1
3

ρ

L(ρ)

(a) The LDF L(ρ) and its maximum (ρ∗ = 1/3, zLD = 11/3). Its polyhedral hypograph is
shaded in red

A
rtificial constraint: z ≤

9−
ρ

zRLD = 9

L(0) = 3

ρ = 0 ρ

L(ρ)

(b) RLDP with S = ∅ and artificial
constraint, maximum (ρ = 0, zRLD = 9)

z ≤
9−

ρ

(3
, 0
)

zRLD = 7

L(2) = 0
ρ = 2 ρ

L(ρ)

(c) RLDP with S = {(3, 0)}, maximum
(ρ = 2, zRLD = 7)

(3
, 0
)

(0, 2)

zRLD = 4.2

L(0) = 3.4

ρ = 0.6

z ≤
9−

ρ

ρ

L(ρ)

(d) RLDP with S = {(3, 0), (0, 2)},
maximum (ρ = 0.6, zRLD = 4.2)

(3
, 0
)

(0, 2)

(1, 1)

ρ∗ = 1
3

zRLD =

L(ρ∗) = 11
3

ρ

L(ρ)

(e) RLDP with S = {(3, 0), (0, 2), (1, 1)}
and optimal LDP solution (ρ∗ = 1

3 , zLD =
11
3 )

Figure 5.3: Lagrangian Dual Problem and Restricted Lagrangian Dual Problems
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we will use 9 instead of the usual 99).

zRM = min 9 a1

s.t. 0 a1 ≥ −1
a1 = 1

a1 ≥ 0.

This RMLP can be solved by only looking at the graph of the corresponding

Restricted Lagrangian Dual Problem (RLDP), which is zRLD = max z s.t. z ≤
9 − ρ, ρ ≥ 0, shown in Figure 5.3b. Its maximum point is (ρ = 0, zRLD = 9). So,

an optimal value for the dual variable of the RMLP first constraint is ρ = 0 and

zRM = zRLD = 9. In general, artificial variables in RMLPs correspond to artificial

dual constraints that prevent the RLDPs from being unbounded. Anyway, the value

of the dual variable of the convexity constraint is readily obtained from (5.13), so

ν = zRM + ρ = 9. Now, solving the LS with ρ = 0, one obtains the lower bound

L(0) = 3 (also visible in Figure 5.3b). Moreover, the optimal solution x̂ = (3, 0) and

leads to a column with reduced cost c∗ = L(0)− zRM = −6 and the next RMLP is:

zRM = min 9 a1 + 3λ1

s.t. 0 a1 − 3λ1 ≥ −1
a1 + λ1 = 1

a1, λ1 ≥ 0.

Looking at the new RLDP zRLD = max z s.t. z ≤ 9 − ρ, z ≤ 3 + 2ρ, ρ ≥ 0 shown

in Figure 5.3c, its maximum point is (ρ = 2, zRLD = zRM = 7), so ν = zRM + ρ = 9.

Solving the LS with ρ = 2, one obtains the lower bound L(2) = 0 (visible in

Figure 5.3c). The LS optimal x̂ = (0, 2) leads to a column with reduced cost c∗ =

L(2)− zRM = −7 and the next RMLP is:

zRM = min 9 a1 + 3λ1 + 6λ2

s.t. 0 a1 − 3λ1 + 2λ2 ≥ −1
a1 + λ1 + λ2 = 1

a1, λ1, λ2 ≥ 0.

The new RLDP shown in Figure 5.3d has its maximum at (ρ = 0.6, zRLD = zRM =

4.2), so ν = zRM + ρ = 4.8. Solving the LS with ρ = 0.6, the optimal point (1, 1)

leads to L(0.6) = 3.4 (visible in Figure 5.3d). So, c∗ = L(0.6) − zRM = −0.8. The
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next RMLP (after removing the now unnecessary artificial variable) is:

zRM = min 3λ1 + 6λ2 + 4λ3

s.t. −3λ1 + 2λ2 ≥ −1
λ1 + λ2 + λ3 = 1

λ1, λ2, λ3 ≥ 0.

The RLDP in Figure 5.3e has its maximum at (ρ = 1/3, zRLD = zRM = 11/3), so

ν = zRM + ρ = 4. Solving the LS with ρ = 1/3, one obtains that L(1/3) = 11/3. As

c∗ = L(1/3)− zRM = 0, the last RMLP is optimal and zM = zRM = zRLD = zLD.

The results in this section lead to valuable insights:

• The LP (5.15) obtained by a DW reformulation of an IP is equivalent to the

maximization of L(π,ρ), which is a concave function defined by up to |Q|
linear parts, subject only to the non-negativity of ρ. As |Q| may be huge, it is

usually not possible to know L(π,ρ) explicitly. However, the pricing subprob-

lem acts as an oracle that given a fixed (π̂, ρ̂) not only returns the correct

value of L(π̂, ρ̂), but also returns a vector x̂ ∈ Q that defines L(x̂,π,ρ), a

linear part of L(π,ρ) that touches it at (π̂, ρ̂).

• The CGA can be viewed as a particular method for maximizing L(π,ρ),

where the tentative (π̂, ρ̂) values are obtained by solving RMLPs (equivalent

to RLDPs) defined by the linear parts of L(π,ρ) given by the points already

evaluated. As the CGA progresses, the partial description of L(π,ρ) contained

in the RMLPs improves, until it converges to a complete local description of

it around an optimal (π∗,ρ∗), a point such that L(π∗,ρ∗) = zLD = zM.

The realization that the CGA can be viewed as a particular method for solving

a Lagrangian Dual Problem indicates that it can be generalized and enhanced by

combining it with elements borrowed from LR. In particular, since it is possible

to solve the pricing subproblems with arbitrary dual values (as long as they are

valid Lagrangian multipliers) and still obtain valid lower bounds, to improve the

convergence of the CGA, one may use auxiliary techniques for guessing good dual

values, which are those that lead to bounds close to zLD = zRM. Those so-called

“stabilization” techniques for CG will be described in Chapter 7.
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5.2.2. Multiple Subproblems
Consider an IP in the following format:

zIP = min c1x1 + · · ·+ cUxU (5.21a)

s.t. A1x1 + · · ·+AUxU = b (5.21b)

D1x1 + · · ·+DUxU≥ d (5.21c)

xu ∈ P u u ∈ [U ] (5.21d)

xu ∈ Zn u ∈ [U ]. (5.21e)

For each u ∈ [U ], Au and Du have dimensions m × nu and r × nu, and P u is a

bounded polyhedron. The special structure in this LP is that (5.21d) consists of U

independent sets of constraints, each such set being expressed over a distinct subset

of the variables.

As done in Section 2.3.2, we also assume that [U ] can be partitioned into K

maximal groups of identical subproblems. Group k ∈ [K] has Uk subproblems. The

first K subproblems are distinct and the remaining U−K subproblems are identical

to some of those first K subproblems. Let U(k) ⊆ [U ] be the indices associated with

group k ∈ [K]. Dualizing Constraints (5.21b) and (5.21c), we obtain the following

LS for any fixed π ∈ R1×m, and ρ ∈ R1×r
+ :

min L(x,π,ρ) =
∑
u∈[U ]

cuxu + π

b−
∑
u∈[U ]

Auxu

+ ρ

d−
∑
u∈[U ]

Duxu


=

∑
u∈[U ]

(cu − πAu − ρDu)xu + πb+ ρd

=
∑
k∈[K]

∑
u∈U(k)

(ck − πAk − ρDk)xu + πb+ ρd (5.22a)

s.t. xu ∈ P u u ∈ [U ] (5.22b)

xu ∈ Znu
u ∈ [U ]. (5.22c)

By considering (5.22) as defining a single subproblem, all results in Section 5.2.1

remain valid. In particular, by defining c = (c1 . . . cU ), A = (A1 . . .AU ), D =

(D1 . . .DU ) and Q = {(q1 . . . qU ) | qu ∈ Int(P u), u ∈ [U ]} (the solutions in Q are

obtained by the possible concatenations of subproblem solutions), we have an LDP

in format (5.12). As shown later in this section, this form is still suitable for a
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graphical visualization of L(π,ρ). However, it is interesting to exploit the fact that

(5.22) can be decomposed into K independent and distinct subproblems. For each

k ∈ [K], the subproblem to be solved is:

ξk∗ = min (ck − πAk − ρDk)xk (5.23a)

s.t. xk ∈ P k (5.23b)

xk ∈ Znk
, (5.23c)

and L(π,ρ) =
∑

k∈[K] U
kξk∗ + πb+ ρd. Defining Qk = Int(P k), for each k ∈ [K],

we can rewrite the L(π,ρ) as
∑

k∈[K] U
k minq∈Qk{(ck−πAk−ρDk)q}+πb+ρd,

and the LDP becomes:

zLD =max L(π,ρ) =
∑
k∈[K]

Uk min
q∈Qk
{(ck − πAk − ρDk)q}+ πb+ ρd (5.24a)

s.t. π ∈ R1×m (5.24b)

ρ ∈ R1×r
+ . (5.24c)

Defining νk, k ∈ [K], as auxiliary variables, (5.24) can be rewritten as:

zLD = max
∑
k∈[K]

Ukνk + πb+ ρd (5.25a)

s.t. νk ≤ (ck − πAk − ρDk)q, k ∈ [K], q ∈ Qk (5.25b)

ν ∈ RK (5.25c)

π ∈ R1×m (5.25d)

ρ ∈ R1×r
+ . (5.25e)

For each k ∈ [K] and q ∈ Qk, let λk
q be the dual variable associated with each
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constraint in (5.25b). The dual LP of (5.25) is:

zM = min
∑
k∈[K]

∑
q∈Qk

(ckq)λk
q (5.26a)

s.t.
∑
k∈[K]

∑
q∈Qk

(Akq)λk
q = b (5.26b)

∑
k∈[K]

∑
q∈Qk

(Dkq)λk
q ≥ d (5.26c)

∑
q∈Qk

λk
q = Uk k ∈ [K] (5.26d)

λk ≥ 0 k ∈ [K], (5.26e)

which is precisely the MLP obtained from the DW decomposition of (5.21), adapted

to take advantage of identical subproblems. We can now prove that the lower bounds

provided by Theorem 2.8 can be viewed as Lagrangian bounds.

Theorem 5.5: Consider a restricted master of (5.26), i.e., its restriction to the

variables defined over subsets Sk ⊆ Qk, k ∈ [K]. Let (π∗,ρ∗,ν∗) be an optimal

dual solution for it with cost zRM. For each k ∈ [K], the optimal pricing subproblem

solution value is ck∗ = min(ck − π∗Ak − ρ∗Dk)xk − ν∗k s.t. xk ∈ P k. Then, zRM +∑
k∈[K] U

k ck∗ = L(π∗,ρ∗).

Proof. Disregarding the constant terms, the pricing subproblems are equivalent

to the problems in (5.23). Let x̂k be an optimal solution, for each k ∈ [K], and x̂

be the concatenation of those subproblem solutions into a single LS solution. Then,

we have

L(π∗,ρ∗) = L(x̂,π∗,ρ∗)

=
∑
k∈[K]

Uk(ck − π∗Ak − ρ∗Dk)x̂k + π∗b+ ρ∗d

=
∑
k∈[K]

Uk(ck − π∗Ak − ρ∗Dk)x̂k + zRM −
∑
k∈[K]

Ukν∗k

= zRM +
∑
k∈[K]

Uk((ck − π∗Ak − ρ∗Dk)x̂k − ν∗k)

= zRM +
∑
k∈[K]

Ukc∗k,
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where the third equality holds because, by strong LP duality, zRM = π∗b + ρ∗d +∑
k∈[K] U

kν∗k .

We give an example that will graphically illustrate the interpretation of the

CGA for multiple subproblems as a method for optimally solving an LDP. Consider

the following IP:

min z = x1 + 3x2 − 3x3 + 9x4

s.t. x1 + 2x2 − x3 + 3x4 = 8

−x1 + x2 ≤ 0

x1 + x2 ≤ 2

2x3 + x4 ≤ 2

x ∈ Z4
+.

By dualizing its first constraint, the obtained LS is:

min L(x1, x2, x3, x4, π) =

(1− π)x1 + (3− 2π)x2 + (−3 + π)x3 + (9− 3π)x4 + 8π

s.t. −x1 + x2 ≤ 0

x1 + x2 ≤ 2

2x3 + x4 ≤ 2

x ∈ Z4
+.

This LS decomposes into two subproblems:

ξ1∗ = min (1− π)x1 + (3− 2π)x2

s.t. −x1 + x2 ≤ 0

x1 + x2 ≤ 2

x1, x2 ∈ Z+,

(5.27)

and
ξ2∗ = min (−3 + π)x3 + (9− 3π)x4

s.t. 2x3 + x4 ≤ 2

x3, x4 ∈ Z+,

(5.28)

having Q1 = {(0 0), (1 0), (2 0), (1 1)} and Q2 = {(0 0), (1 0), (0 1), (0 2)} as their so-
lution sets. Consider an equivalent DW reformulation that keeps the first constraint

in the master and its solution by the CGA. Noticing that both subproblems have
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(0 0) as solutions and introducing an artificial variable with cost 9, the first RMLP

is:
zRM = min 9a1 + 0λ1

1 + 0λ2
1

s.t. a1 + 0λ1
1 + 0λ2

1 = 8

λ1
1 = 1

λ2
1 = 1

(a,λ) ≥ 0.

This RMLP can be solved by only looking at the graph of the corresponding

Restricted Lagrangian Dual Problem (RLDP) in format (5.12), which is zRLD =

max z s.t. π ≤ 9, z ≤ 8π, where the second constraint corresponds to the concate-

nation of the solutions (0, 0) ∈ Q1 and (0, 0) ∈ Q2. This is shown in Figure 5.4a. Its

maximum point is (π = 9, zRLD = 72). So, an optimal value for the dual variable

of the RMLP first constraint is π = 9 and zRM = zRLD = 72. The artificial dual

constraint π ≤ 9 prevented that RLDP from being unbounded. Solving the subprob-

lems defined in (5.27) and (5.28) using π = 9, one gets ξ1∗ = −23 with x̂1 = (1 1)

and ξ2∗ = −36 with x̂2 = (0 2), respectively, so L(9) = −23 − 36 + 72 = 13. The

next RMLP is:

zRM = min 9a1 + 0λ1
1 + 0λ2

1 + 4λ1
2 + 18λ2

2

s.t. a1 + 0λ1
1 + 0λ2

1 + 3λ1
2 + 6λ2

2 = 8

λ1
1 + λ1

2 = 1

λ2
1 + λ2

2 = 1

(a,λ) ≥ 0.

Here we can see the “magic of multiple subproblems” on CG convergence. The

introduction of two columns in the RMLP yields three additional constraints in

the RLDP. This happens because the S1 = {(0 0), (1 1)} and S2 = {(0 0), (0 2)}
combine into S = {(0 0 0 0), (0 0 0 2), (1 1 0 0), (1 1 0 2)}, so the RDLP is zRLD =

max z s.t. π ≤ 9, z ≤ 8π, z ≤ 2π + 18, z ≤ 5π + 4, z ≤ −π + 22, shown in Figure

5.4b. Its maximum point is (π = 3, zRLD = 19). So, an optimal value for the dual

variable of the RMLP first constraint is π = 3 and zRM = zRLD = 19. Solving the

subproblems using π = 3, one gets ξ1∗ = −5 and ξ2∗ = 0, so L(3) = −5+0+24 = 19.

So, π∗ = 3 and zM = zLD = 19 is the optimal Lagrangian Dual.
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t:

π
≤

9

π = 9

L(9) = 13

π

L(π)

(a) RLDP with S = {(0 0 0 0)} and maxi-
mum (π = 9, zRLD = 72)

(1 1 0 2)

(1
1
0
0
)

(0
0
0
0
)

(0
0
0
2)

π
≤

9

π∗ = 3

zRLD =

L(π∗) = 19

π

L(π)

(b) RLDP with S = {(0 0 0 0),
(0 0 0 2), (1 1 0 0), (1 1 0 2)} and opti-
mal LDP solution (π = 3, zLD = 19)

Figure 5.4: Lagrangian Dual Problem and sequence of Restricted Lagrangian Dual
Problems

5.3. LR Resolution Methods
LR resolution methods are iterative algorithms that solve LDPs assuming that

there exists a practically efficient auxiliary algorithm for solving the corresponding

Lagrangian Subproblem at a given point. Such methods should generate a sequence

of points (π0 ρ0 ), (π1 ρ1 ), . . . such that L(πt, ρt) is guaranteed to converge to the

optimum value of (5.3), i.e., limt→∞ L(πt, ρt) = zLD. It should be noted that the

convergence does not need to be (and rarely is) monotonic, meaning that at some

iterations t we may have L(πt, ρt) < L(πt−1, ρt−1). Of course, a main concern

when designing an LR resolution method is the practical speed of the convergence.

There are numerous families of LR resolution methods. We present two such

families: the subgradient methods, which are the most typical “Lagrangian Meth-

ods”; and the cutting plane methods, which are closely related (sometimes even

equivalent) to CG.
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5.3.1. Subgradient Methods
We discuss some subgradient methods for solving an LDP in format (5.3), which

corresponds to the maximization of a concave function. In that case, subgradient

methods use supergradient vectors. The reason for the methods’ name is historical:

they were first proposed for the minimization of convex functions, where subgradient

methods indeed use subgradient vectors.

Theorem 5.6: Let x0 ∈ X, π0 ∈ R1×m, and ρ0 ∈ R1×r
+ such that L(π0,ρ0) =

L(x0,π0,ρ0). Then, s =
(

g(x0)

h(x0)

)
is a supergradient of function L(π,ρ) at (π0 ρ0),

i.e., for any π ∈ R1×m and ρ ∈ R1×r
+ ,

L(π,ρ) ≤ L(π0,ρ0) + ( (π ρ)− (π0 ρ0) ) s.

Proof.

L(π,ρ) = min
x∈X

L(x,π,ρ) ≤ L(x0,π,ρ) = c(x0) + π g(x0) + ρh(x0)

= c(x0) + π0 g(x0) + ρ0 h(x0) +

(π − π0) g(x0) + (ρ− ρ0)h(x0)

= L(π0,ρ0) + (π − π0) g(x0) + (ρ− ρ0)h(x0)

= L(π0,ρ0) + ( (π ρ)− (π0 ρ0) ) s.

The first, second and fourth equalities are true by definition of L(π,ρ), L(x,π,ρ)

and L(π0,ρ0), respectively.

Consider the LDP of the example in Section 5.1.1 (its LDF L(ρ) = 8ρ − 6
√
ρ

is depicted in Figure 5.2). According to Theorem 5.6, supergradients at ρ1 = 1/16,

ρ2 = 9/64, and ρ3 = 25/49 are h((4 2)) = 4, h((8/3 4/3)) = 0, and h((7/5 7/10)) =

−3.8, respectively. Thus, L(ρ) ≤ 3
4 + 4ρ, L(ρ) ≤ 1.125 and L(ρ) ≤ 15

7 − 3.8ρ. Each

line depicted in Figure 5.2 corresponds to the points where one of the previous

inequalities holds with equality. As this LDF is differentiable, all supergradients

are also gradients. Therefore, there is a unique supergradient of L(ρ) at each point

ρ0 ≥ 0.
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Alternatively, consider the LDP of the example in Section 5.2.1. Its LDF L(ρ)

(depicted in Figure 5.3a) is non-differentiable at some points, like in ρ0 = 1/3.

Depending on which optimal solution x0 of L(x, ρ0) is used, Theorem 5.6 yields

different supergradients. In particular, h((1 1)) = −1 and h((3 0)) = 2 are super-

gradients. Indeed, any s ∈ [−1, 2] is a supergradient of L(ρ) at ρ0 = 1/3.

Subgradient methods for LR are iterative algorithms that use supergradients

(possibly together with other information) to generate a sequence of points con-

verging to an optimal solution of (5.3).

5.3.1.1. The Subgradient Method
There are many possibilities to generate a sequence that guarantees convergence.

The Subgradient Method is characterized by always using the supergradient direc-

tion at the current point to generate the next one. Variants of that method essen-

tially differ in the way the step size is chosen. The general Subgradient Method is

presented in Algorithm 3:

Algorithm 3 The Subgradient Method for Solving (5.3)

1: t← 0
2: (π0 ρ0 )← initial multipliers
3: repeat
4: xt ← argminx∈X L(x,πt,ρt) ▷ Solve the LS

5: s←
(

g(xt)

h(xt)

)
▷ Calculate a supergradient

6: Compute step size δt

7: (πt+1 ρt+1 )← γ
(
(πt ρt ) + δt s⊺

)
8: t← t+ 1
9: until stopping condition is met

10: return (πt ρt )

• The multipliers are initialized in Line 2. They are often set to zero values.

However, they may be hot-started with a (hopefully) better guess.

• Line 4 solves the LS with the current multipliers to find an optimal solution xt

(any optimal solution is OK), which is used for calculating the supergradient

s in Line 5.
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• The computing of the step size δt at Line 6 tries to balance theoretical con-

vergence even in the worst case with good practical performance.

• In Line 7, the supergradient s defines the direction to move from the current

point to the next one. The actual movement in that direction depends on

the scalar step size δt. The truncating function γ( (π ρ) ) = (π max{ρ,0} )
(where the maximum value of vectors is taken element-wise) is necessary to

ensure that the next point is feasible.

Some authors replace Line 7 with (πt+1 ρt+1 ) ← γ((πt ρt ) + δt s⊺

||s||), nor-

malizing the supergradient direction. If so, δt should be called an step length,

as ||(πt+1 ρt+1 )−(πt ρt )|| ≤ δt, with equality holding when (πt+1 ρt+1 ) =

(πt ρt ) + δt s⊺

||s|| .

• The stopping condition at Line 9 may be as simple as only an iteration count.

More sophisticated conditions try to determine whether the algorithm is al-

ready very close to the optimum. For example, checking if the difference be-

tween the current and the previous point is smaller than a given tolerance, or

if the best Lagrangian bound already achieved does not improve significantly

after a certain number of iterations.

The classic LR algorithm for solving the TSP by Held and Karp [1971] used as

step size at iteration t:

δt = α
L− L(πt,ρt)

||s||2
, (5.29)

where the denominator is the square of the Euclidean norm of the subgradient, L

is an upper bound on zLD, and α is a value such that 0 < α ≤ 2. Held et al. [1974]

proposed starting with α = 2 and decreasing α by a fixed factor after every block

of iterations, each block being defined by a certain number of iterations. When the

method is being used for solving the Lagrangian Dual Problem of an IP, the cost of

any known feasible solution to the original IP can provide a value for L.

A Subgradient Method variant with a good definition of the step size can work

reasonably well in many cases. However, in many other practical cases, its con-

vergence can be very slow and this can not be fixed by finding better steps. The

problem is that the supergradient direction is not necessarily a good direction to

move towards the optimum value of (5.3). An example of this behavior is illustrated

in Figure 5.5, where the contour lines of a 2D piecewise linear function L(π) are
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depicted as triangles. The optimum solution is the point inside the innermost tri-

angle. Each point πt, for t = 0, . . . , 5, is labeled by the number t in the figure, and

the adjacent arrows indicate the supergradient directions. Note that, except for the

unlikely case that the method falls exactly into one of the non-differentiable points,

any supergradient computed in the region that surrounds the depicted points will

have one of the two directions shown in the figure. In this case, the only way to

reach the optimal value in fewer iterations would be to adopt a much larger step

size to escape from that region, but that would require a global knowledge of the

function, which is not available.

0
1

2
3

4
5

π1

π2

Figure 5.5: A bad case for the Subgradient Method.

5.3.1.2. Conjugate Subgradient and Bundle Methods
One way to mitigate the bad behavior of the Subgradient Method is to replace

the single supergradient direction with a combination of several supergradients al-

ready computed. This is the idea behind the quite similar methods proposed by

Lemaréchal [1975] and Wolfe [1975] (as both articles were published in the same

journal issue, they cite each other and refer to the set of supergradients used to

compute a direction as a bundle). We outline how directions are obtained in the

Conjugate Subgradient method as proposed in Wolfe [1975]:

• Let B be the matrix where the rows are the supergradients in the current
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bundle, which always contains the supergradient at the current point. The used

direction is the convex combination of those supergradients with minimum

Euclidian norm. In other words, d = λ∗B where λ∗ is the solution of z∗ =

min ||λB|| s.t. λ1 = 1,λ ≥ 0, a quadratic optimization problem that can

be efficiently solved by specialized methods (see Wolfe [1976] for a deeper

discussion). If z∗ = 0 then d = 0 is not a valid direction. In such case there

are two possibilities:

– If the points that generated the supergradients used in the convex com-

bination (i.e., those corresponding to rows i such that λ∗
i > 0) are suffi-

ciently close, it is considered that those points are already near-optimal

solutions of (5.3). The algorithm stops.

– Otherwise, the bundle is reset to contain only the current supergradient

(a discussed variant of the method keeps some other supergradients in

the bundle).

If z∗ > 0 direction d is valid. However, instead of using a step size given by a

formula, the next point is determined by a line search over direction d. The

supergradient of that next point is added to the bundle.

We use the example in Figure 5.3a to give an intuition on the above stopping

criteria. Consider the bundle obtained by the supergradients at points ρ1 = 0 and

ρ2 = 2. Matrix B =
(

2
−3

)
gives z∗ = 0, meaning that ρ1 and ρ2 sampled L(ρ) to

the left and to the right of the optimal point ρ∗ = 1/3. However, those two points

are too far apart, so there is no guarantee that any of them is close to the optimum

and the algorithm can not stop. Points ρ3 = 0.99 and ρ4 = 1.01 are close, but

the bundle with their supergradients B =
(−1
−3

)
yields z∗ = 1 > 0, meaning that

those points were not properly sampled around ρ∗. Finally, points ρ5 = 0.33 and

ρ6 = 0.34 are close and the bundle with their supergradients yields B =
(

2
−1

)
and

z∗ = 0, so the algorithm can stop. Indeed, those examples also provide intuition

on why the method chooses directions with minimum norms. By doing so, at each

non-resetting iteration, the convex hull of the bundle gets closer to the origin. It is

a way of inducing the creation of a bundle that samples L(π, ρ) “around” (in all its

dimensions) the set of its optimal solutions.
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5.3.2. Cutting Plane (Dual Column Generation)

Methods

5.3.2.1. Single Subproblem
Problem (5.3), assuming for simplification that no multipliers ρ exist, can be rewrit-

ten as the following “LP” with an infinite number of constraints2:

max z (5.30a)

s.t. z ≤ L(π′) + (π − π′)s(π′) π′ ∈ R1×m (5.30b)

π ∈ R1×m, (5.30c)

where s(π′) is a function that returns some supergradient of L(π) at π′. By the

definition of supergradient, L(π) ≤ L(π′) + (π − π′)s(π′) for all π,π′ ∈ R1×m, an

inequality that becomes equality when π = π′. So, if π∗ is an optimal solution of

(5.3) with value zLD then (zLD,π
∗) is an optimal solution of (5.30).

The cutting plane method by Cheney and Goldstein [1959] and Kelley, Jr [1960]

converges to an optimal solution of (5.30) by solving a sequence of LPs having

only a finite (and small) subset of the Constraints (5.30b). At each iteration, the

method maintains an outer approximation of the hypograph of L(π). An example

of such an approximation is depicted in Figure 5.2 if we consider the polyhedral

region below the green, red, and orange lines. Note that this region approximates

the hypograph of (5.30), which is precisely the region shaded in blue. Algorithm 4

presents a pseudocode for the cutting plane method.

By considering the dual of (5.30) as a “Master LP” with an infinite number of

variables, one may view the cutting plane method as a kind of dual CG that can be

applied in any LR context, including the cases where the original problem is non-

linear. However, if the original problem is an LP or a MIP, like those considered

in Chapter 2 and 4, the LDF is piecewise linear, meaning that there are only a

finite number of distinct and non-redundant inequalities in (5.30b). In those cases,

Algorithm 4 can be run with tolerance ϵ = 0 and is guaranteed to finish with an

optimal solution, becoming equivalent to the Column Generation Algorithm. This

is why some authors in the Lagrangian community refer to the basic CGA as the

2“LP” because almost all authors assume that proper LPs should have finite size.

233



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Algorithm 4 Cutting Plane Algorithm for Solving (5.30)

1: t← 0
2: LP← max z s.t. π ∈ R1×m + artificial constraints to avoid unboundedness
3: repeat
4: t← t+ 1
5: Solve LP obtaining solution (zt,πt)
6: xt ← argminx∈X L(x,πt) ▷ Solve the LS
7: s← g(xt) ▷ Get supergradient
8: if zt > L(πt) + ϵ then ▷ ϵ is a small tolerance
9: Add constraint z ≤ L(πt) + (π − πt)s to LP

10: end if
11: until no constraint was added to LP or other stopping condition is met
12: return πt

Cheney-Goldstein-Kelley Algorithm (more often as only Kelley’s Algorithm). We

provide an example of the cutting plane/dual column generation method converging

to the optimal solution of an LDP arising from non-linear optimization. Indeed,

such an approach can be particularly interesting when the resulting LS can be

decomposed into many independent subproblems.

5.3.2.2. Multiple Subproblems
Cheney-Goldstein-Kelley algorithm can be extended to handle multiple subprob-

lems, some of them identical, through a development analogous to the one presented

in Subsection 5.2.2. In this way, we show that one can still profit from the “magic

of multiple subproblems” used in the CG approach to improve the convergence of

non-linear problems that become separable when applying LR.

Consider a generic problem in the following format:

min z = c1(x1) + · · ·+ cU (xU ) (5.31a)

s.t. g1(x1) + · · ·+ gU (xU ) = b (5.31b)

xu ∈Xu u ∈ [U ]. (5.31c)

For each u ∈ [U ], Xu ⊆ Rnu
be a (possibly infinite) set of points, and let cu : Xu 7→

R, and gu : Xu 7→ Rm be functions defined over such points. The special structure

in this problem is that (5.31c) consists of U independent sets of constraints, each

234



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

such set being expressed over a distinct subset of the variables.

As done in Section 2.3.2, we also assume that [U ] can be partitioned into K

maximal groups of identical subproblems. Group k ∈ [K] has Uk subproblems. The

first K subproblems are distinct and the remaining U−K subproblems are identical

to some of those first K subproblems. Let U(k) ⊆ [U ] be the indices associated with

group k ∈ [K]. Dualizing Constraints (5.31b), we obtain the following LS for any

fixed π ∈ R1×m:

min L(x,π) =
∑
u∈[U ]

cu(xu) + π

b−
∑
u∈[U ]

gu(xu)


=
∑
u∈[U ]

(cu(xu)− πgu(xu)) + πb

=
∑
k∈[K]

∑
u∈U(k)

(ck(xu)− πgk(xu)) + πb (5.32a)

s.t. xu ∈ Xu u ∈ [U ]. (5.32b)

By considering (5.32) as defining a single subproblem, all results in Section 5.2.1

remain valid. However, it is interesting to exploit the fact that (5.32) can be de-

composed into K independent subproblems. For each k ∈ [K], the subproblem to

be solved is:

ξk(π) = min ck(xk)− πgk(xk) (5.33a)

s.t. xk ∈ Xk, (5.33b)

and L(π) =
∑

k∈[K] U
kξk(π)+πb. Note that, just like L(π), function ξk(π), k ∈ [K],

is the pointwise minimum of a number (possibly infinite) of linear functions over

π. Thus, they are concave functions too. Moreover, when solving (5.33) for a given

π′ ∈ R1×m to obtain the value of ξk(π′), the optimal solution xk∗ can be used to

compute gk(xk∗), which is a supergradient of ξk(π) at π′.

Theorem 5.7: Let xk∗ ∈ Xk, and π′ ∈ R1×m such that ξk(π′) = ck(xk∗) −
π′gk(xk∗). Then, sk = gk(xk∗) is a supergradient of function ξk(π) at π′, i.e., for

any π ∈ R1×m,

ξk(π) ≤ ξk(π′) + (π − π′) sk.
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Proof.

ξk(π) = min
xk∈Xk

{ck(xk)− πgk(xk)} ≤ ck(xk∗)− πgk(xk∗)

= c(xk∗) + π′ g(xk∗) + (π − π′) g(xk∗)

= ξk(π′) + (π − π′) sk.

The first and the last equalities are true by definition of ξk(π), and by the theorem

statement, respectively.

Now, let sk(π′) denote a supergradient of ξk(π) at π′. Defining νk, k ∈ [K], as

auxiliary variables, the LDP of (5.31) can be written as:

zLD =max
∑
k∈[K]

Ukνk + πb (5.34a)

s.t. νk ≤ ξk(π′) + (π − π′) sk(π′) k ∈ [K],π′ ∈ R1×m (5.34b)

ν ∈ RK (5.34c)

π ∈ R1×m (5.34d)

(5.34e)

The LDP in the form (5.34) can also be solved using the standard cutting plane

algorithm. Indeed, Kelley, Jr [1960] proposes to add only the most violated cut in

each iteration. Later, Dinkel et al. [1977] observed that adding all violated cuts leads

to a superior performance. This observation is consistent with the standard practices

of the CG community. The modified cutting plane is presented as Algorithm 5. Note

that (5.34b) is equivalent to

νk ≤ ck(xk∗)− πgk(xk∗) (5.35)

by the development of the proof of Theorem 5.7. This form has the advantage of

not depending on π′, and is still valid even if xk∗ is not an optimal subproblem

solution. This makes it suitable to initialize the LP in line 2 of Algorithm 5 when

some feasible subproblem solutions are available, reducing the need for artificial

constraints and also accelerating the convergence. We use that observation in the

numerical example presented next.

Consider the problem over variables x = (x1 x2 x3) with a non-linear objective
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Algorithm 5 Cutting Plane Algorithm for Solving (5.34)

1: t← 0
2: LP ← max

∑
k∈[K] U

kνk + πb s.t. π ∈ R1×m + artificial constraints to avoid
unboundedness

3: repeat
4: t← t+ 1
5: Solve LP obtaining solution (νt,πt)
6: for each k ∈ [K] do
7: xkt ← argminxk∈Xk{ck(xk)− πtgk(xk)} ▷ Solve the LS
8: sk ← gk(xkt) ▷ Get supergradient
9: if νtk > ξk(πt) + ϵ then ▷ ϵ is a small tolerance

10: Add constraint νk ≤ ξk(πt) + (π − πt) sk to LP
11: end if
12: end for
13: until no constraint was added to LP or other stopping condition is met
14: return πt

function and a non-linear quadratic constraint:

min
x21
50
− ln(x2 + 1)− ln(x3 + 1) (5.36a)

s.t. x1 + 3 ≥ x22 + x23 (5.36b)

x ∈ R × Z2
+. (5.36c)

Dualizing Constraint (5.36b), for any fixed ρ ∈ R+ we have the following Lagrangian

Subproblem:

min L(x, ρ) =
x21
50
− ln(x2 + 1)− ln(x3 + 1) + ρ(x22 + x23 − x1 − 3) (5.37a)

s.t. x ∈ R+ × Z2
+. (5.37b)

This LS can be decomposed into three independent problems. The first two de-

fine the following functions: ξ1(ρ) = min
x2
1

50 − ρx1 s.t. x1 ∈ R+, and ξ2(ρ) =

min ρx22 − ln(x2 + 1) s.t. x2 ∈ Z+. The third subproblem is identical to the sec-

ond. Then, Constraint (5.36b) can be written as g1(x1) + g2(x2) + g2(x3) ≤ 3,

where g1(x1) = −x1, and g2(x2) = x22. We can use elementary calculus to find an

analytical expression to ξ1(ρ). Since the objective function of the corresponding
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subproblem is strictly convex for fixed ρ, its minimum value is attained at the only

point x∗1 = 25ρ where the derivative with respect to x1 is zero. Then, we obtain

that ξ1(ρ) = −12.5ρ2. The same approach can be applied to the linear relaxation

of the subproblem that defines ξ2(ρ), resulting in

x∗2 =
−1 +

√
1 + 2/ρ

2
,

for ρ > 0. Since this subproblem has a single decision variable and a strictly convex

objective function, its optimal solution x∗2 is necessarily either ⌊x∗2⌋ or ⌈x∗2⌉, which
can be computed by inspection.

We now solve its LDP using Algorithm 5. The LP is initialized in Line 2 with

an artificial constraint bounding ν1, and two constraints derived from the feasible

solution (73 3 3), using (5.35). The initial LP is:

max ν1 + 2ν2 − 3ρ (5.38a)

s.t. ν1 ≤ 99 (5.38b)

ν1 ≤ 106.58− 73ρ (5.38c)

ν2 ≤ − ln 4 + 9ρ (5.38d)

ν ∈ R2 (5.38e)

ρ ∈ R+. (5.38f)

So, at iteration t = 1, in Line 5 we obtain the optimal solution ν1 = (99 −0.4517738)
and ρ1 = 0.1038356. Solving the subproblems associated to ξ1(ρ1) and ξ2(ρ1) in Line

7, we obtain the objective values −0.1347729, for x1,1 = 2.5958904, and −0.6832698,
for x2,1 = 2, respectively. The supergradients of ξ1(ρ) and ξ2(ρ) at ρ1 computed in

Line 8 are −x1,1 = −2.5958904 and (x2,1)2 = 4, respectively. This leads to the

violated constraints:

ν1 ≤ −0.1347729+(ρ− 0.1038356) × (−2.5958904) (5.39a)

ν2 ≤ −0.6832698+(ρ− 0.1038356) × 4, (5.39b)

being added to the LP in Line 10. By repeating this procedure for four more itera-
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tions, until t = 5, the following additional constraints are added:

ν1 ≤−28.5736932+(ρ−1.5119178) × (−37.7979452) (5.40a)

ν2 ≤ 0 (5.40b)

ν1 ≤ −0.9429289+(ρ−0.2746531) × (−6.8663268) (5.40c)

ν2 ≤ −0.4184941+(ρ−0.2746531) × 1 (5.40d)

ν1 ≤ −0.228336+(ρ −0.135155) × (−3.3788759), (5.40e)

in this order. Two constraints were added in the second iteration, two in the third,

and only one in the fourth. In the last iteration, no violated cut was found. The op-

timal solution for the final LP is ν5 = (−0.228336 −0.5579921) and ρ5 = 0.135155,

and the LR bound is zLD = L(ρ5) = −1.7497854. An optimal solution to the orig-

inal mixed-integer non-linear problem (5.36) is x = (2 1 2), with objective value

−1.7117595. By relaxing the integrality constraints in (5.36) and solving the result-

ing continuous non-linear problem, a lower bound of −1.8319819 would be obtained.

The bound zLD is stronger because the integrality is not relaxed in the subproblems.

Figure 5.6 depicts the LDF L(ρ). A solution x of the LS (5.37) yields the fol-

lowing line:

z ≤ x21
50
− x1 ρ− ln(x2 + 1) + x22 ρ− ln(x3 + 1) + x23 ρ− 3 ρ, (5.41)

which may be part of the outer approximation of the hypograph of L(ρ). As done

in the numerical example of Subsection 5.2.2, some of those lines are labeled by

the solutions that define them. Observe in Figure 5.6 that the two lines that are

active at the optimal solution are z ≤ −1.1579583 − 4.3788759 × ρ, and z ≤
−1.9688885+1.6211241× ρ, associated with the LS solutions (3.3788759 1 1), and

(3.3788759 2 2), respectively. Note that those two solutions are combinations of

subproblem solutions found in different iterations. While x1 = 3.3788759 has been

found in the fourth iteration, x2 = x3 = 1 was found in the third, and x2 = x3 = 2

in the first. This illustrates again the “magic of multiple subproblems”.

5.4. Two Examples
We illustrate the use of LR on exact algorithms for LCOPs with two examples.
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ρ

L(ρ)

Figure 5.6: The LDF L(ρ) corresponding to LS (5.37). The two lines (obtained by
the cutting plane algorithm as combinations of partial solutions found in different
iterations) that define the optimal solution are shown.

5.4.1. Traveling Salesperson Problem
Consider a TSP defined over a graph G = (V,E) with vertex-set V = [n], 1 rep-

resenting an arbitrary vertex, and the following formulation, which is equivalent to

(3.5):

min
∑
e∈E

cexe (5.42a)

s.t.
∑
e∈δ(i)

xe = 2 i ∈ V \ {1} (5.42b)

∑
e∈δ(1)

xe = 2 (5.42c)

∑
e∈E(V \{1})

xe = n− 2 (5.42d)

∑
e∈E(S)

xe ≤ |S| − 1 S ⊆ V \ {1} (5.42e)

x ∈ B|E|. (5.42f)

Equality (5.42d) is redundant, as it can be obtained by summing all constraints in

(5.42b), subtracting the equality (5.42c), and then dividing the result by two. Sub-

tour elimination inequalities in format (5.42e) are equivalent to inequalities (3.5c)

(see Note 3.13). Held and Karp [1970] applied a DW decomposition to (5.42), keep-

ing (5.42b) in the master. Let Q be the set of subproblem solutions, the resulting
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MLP is:

zM =min
∑
q∈Q

(∑
e∈E

ceqe

)
λq (5.43a)

s.t.
∑
q∈Q

( ∑
e∈δ(i)

qe

)
λq = 2 i ∈ V \ {1} (5.43b)

∑
q∈Q

λq = 1 (5.43c)

λ ≥ 0. (5.43d)

Let π and ν be the dual variables corresponding to (5.43b) and (5.43c), the pricing

subproblem has format:

c̄∗ =min
∑

e={i,j}∈E

(ce − π∗
i − π∗

j )xe − ν∗ (5.44a)

s.t.
∑

e∈δ(1)

xe = 2 (5.44b)

∑
e∈E(V \{1})

xe = n− 2 (5.44c)

∑
e∈E(S)

xe ≤ |S| − 1 S ⊆ V \ {1} (5.44d)

0 ≤ xe ≤ 1 e ∈ E (5.44e)

x ∈ Z|E|. (5.44f)

Held and Karp realized that the solutions of (5.44) correspond to what they called

1-trees: a spanning tree of the subgraph induced by V \ {1} plus two edges adja-

cent to vertex 1 (all tours are 1-trees but most 1-trees are not tours). Therefore,

despite having an exponential number of constraints, the pricing subproblems can

be easily solved! It suffices to compute a minimum cost spanning tree in V \ {1}
(implementations of either Bor̊uvka, Prim-Jarńık or Kruskal algorithms can run in

O(|E|. log |V |) time) and then add the two cheapest edges adjacent to 1, in both

cases using the modified costs in (5.44a).

That discovery had the potential to result in the first BPA ever. Let us consider

that historical moment. The concepts of Branch-and-Cut and separation algorithms

were not yet well-established. Dantzig et al. [1954] separated subtour elimination

constraints in format (3.5c) manually, looking at fractional solutions drawn in a
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paper. Solving (5.43) by CG would provide the first fully automated way of obtain-

ing a strong bound zM at least as good as the Dantzig-Fulkerson-Johnson Subtour

Bound. By the way, after Edmonds [1971] proved that (5.44c)–(5.44e) is a perfect

description of the spanning tree polyhedron, it can be shown that the subproblem

has the integrality property, and therefore, by Theorem 4.1, those bounds are identi-

cal. However, the CGA implemented in Held and Karp [1970] to solve (5.43) yielded

frankly disappointing results: “The program was able to solve most problems with

n = 12 and some problems with 13 ≤ n ≤ 20. On larger problems, convergence was

always too slow to permit optimal solutions to be reached. This slow convergence

is consistent with the behavior of other column-generation techniques.” Remember

that Dantzig et al. [1954] could solve an instance with n = 49 using much inferior

computational resources.

The breakthrough in the exact solution of the TSP would only happen in Held

and Karp [1971], when the authors dropped CG and replaced it with LR. For fixed

multipliers π = (π1 . . . πn), they define the following Lagrangian Subproblem:

L(π) =min
∑

e={i,j}∈E

(ce − πi − πj)xe − 2
∑
i∈V

πi (5.45a)

s.t. x ∈ Q, (5.45b)

where Q is the set containing the incidence vectors of all 1-trees. Multiplier π1,

corresponding to dualizing a constraint (5.42c) that is also kept in the subproblem,

is not really necessary, as all 1-trees have degree two at vertex 1. However, the

authors possibly preferred to have multipliers for all vertices to make things more

symmetrical. The proposed method uses the Subgradient Algorithm with step size

(5.29) for obtaining a near-optimal solution to the LDP zLD = maxπ L(π), reaching

a bound zroot close to zLD = zM. The calculation of a supergradient in Line 5 of

Algorithm 3 becomes s← g(xt) = ((
∑

e∈δ(1) x
t
e − 2) . . . (

∑
e∈δ(n) x

t
e − 2)).

Finally, they devised a Branch-and-Bound using those strong Lagrangian bounds

to obtain a complete TSP method. Remark that the “dual” Subgradient Algorithm

does not readily provide a primal fractional solution x∗ to the linear relaxation of

(5.42) that can be used for choosing the branching variable (the issue of recovering

primal fractional solutions in Lagrangian methods is discussed in Note 5.2). Their

proposed branching scheme can be outlined as follows. Let π′ be the best multiplier

vector at the current node and x′ be the corresponding 1-tree incidence vector.
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For each still non-fixed edge e, they evaluate the conditional bound obtained with

multipliers π′ but assuming that xe = 0. Due to the favorable properties of the

minimum spanning tree problem, this can be efficiently done. Actually, for each edge

e such that x′e = 0 this is trivial, as no bound improvement is possible. Anyway, the

edges are sorted in non-decreasing conditional bound order as e1, e2, . . . , ep. Then,

the first child node imposes xe1 = 0, the second imposes xe1 = 1, xe2 = 0, the third

xe1 = 1, xe2 = 1, xe3 = 0, and so on. The scheme worked fine in the tested instances

because almost all those children nodes could be immediately pruned.

The authors of Held and Karp [1971] were quite enthusiastic, as indicated by

their abstract: “A branch-and-bound procedure based upon these considerations has

easily produced proven optimum solutions to all traveling-salesman problems pre-

sented to it, ranging in size up to sixty-four cities. The bounds used are so sharp

that the search trees are minuscule compared to those normally encountered in com-

binatorial problems of this type.” Indeed, that seminal article inspired the first wave

of LR-based methods for LCOPs (and discouraged CG!) in the 1970s. Some remarks:

• As will be discussed in Section 5.5, now we know why the Subgradient Al-

gorithm was much better than CG in solving essentially the same problem:

approximating the Subtour Bound for the TSP by pricing 1-trees. In reality,

that problem gathers all the known features favorable to subgradient meth-

ods and unfavorable to the standard CG (standard in the sense of not being

enhanced by advanced stabilization methods, as described in Chapter 7).

• The Held-Karp method for the TSP (including its long sequence of enhanced

versions, starting with Helbig Hansen and Krarup [1974]) was largely sup-

planted by BCAs that can not only obtain the exact Subtour Bound by sep-

arating those constraints in a very efficient way but indeed obtain almost

incredible tighter bounds by also separating several other families of cuts, as

described in Section 3.4.1 and in Note 3.15. Actually, the HK method survives

in niche applications as a lightweight stand-alone code (not requiring an LP

solver) that can quickly solve small TSP instances.

A very didactic presentation of the HK method can be found in Cook et al.

[1998].
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5.4.2. Generalized Assignment Problem
The GAP (Definition 4.3) was used in Section 4.4.1 to illustrate the BP and BCP

algorithms. Note 4.8 is a short survey of existing GAP exact solvers. This section

presents the LR-based method in Posta et al. [2012].

Consider the Formulation (4.16). By dualizing the assignment Constraints (4.16b),

the LS problem can be decomposed into K subproblems. Given a fixed multiplier

vector π = (π1 . . . πJ), the Binary Knapsack subproblem corresponding to machine

k ∈ [K] is:

ξk∗(π) = min
∑
j∈[J ]

(ckj − πj)x
k
j (5.46a)

s.t.
∑
j∈[J ]

wk
j x

k
j ≤Wk (5.46b)

xk ∈ {0, 1}J . (5.46c)

The LDP is zLD = max L(π) =
∑

k∈[K] ξ
k∗(π) +

∑
j∈[J ] πj s.t. π ∈ R1×|J |. The

optimal Lagrangian bound zLD is identical to the strong bound zM obtainable by

solving (4.18) by CG. The optimal solutions xk∗ of subproblems (5.46) provide a

supergradient s = ((
∑

k∈[k] x
k∗
1 −1) . . . (

∑
k∈[k] x

k∗
J −1)) of the LDF at point π. Up

to here, there is no novelty; Fisher [1981] already mentions three works that used

such LR scheme for the GAP. However, some enhancements proposed in Posta et al.

[2012] led to a method that still obtains some of the best results for this problem:

• At the root node, an LP solver quickly obtains the optimal dual solution

of the linear relaxation of (4.16), which is used to hot-start the multiplier

vector π. Then, algorithm [B]TT/OBP [Frangioni, 1996] is used to obtain a

near-optimal LDP solution πr yielding a bound zroot = L(πr) very close to

zLD. This Bundle-type algorithm worked much better than the Subgradient

algorithms employed by previous authors.

• All GAP instances from the literature have integer costs, so zIP is known be-

forehand to be an integer. Moreover, those costs are relatively small numbers,

meaning that the strong bound zroot implies an absolute gap zIP−zroot of only
a few units. The method exploits that and proceeds by running a sequence of

BBAs that try to find a solution with tentative integer values z̄, starting with

z̄ = ⌈zroot⌉. In any of those runs, a node S with bound zS > z̄ is pruned. If a
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BBA finds any integer solution with value z̄, that should be an optimal GAP

solution and the optimization finishes immediately. Otherwise, if a BBA run

ends without finding a solution, it is proven that solutions with value z̄ do

not exist. In that case, a new BBA with z̄ incremented by one unit is started.

Of course, its root node already begins from πr. For example, on instance

D-5-100, ⌈zroot⌉ = 6350, so the first three BBA runs prove that solutions with

values 6350, 6351, and 6352 do not exist; and only the fourth BBA run finds

the optimal solution with value zIP = 6353.

The approach might seem inefficient due to “wasted” runs where z̄ < zIP,

but this is not the case. The number of nodes in a BBA run grows more

than linearly (exponentially, indeed) with the difference z̄ − zroot. Thus, if

the run with z̄ = zIP takes a reasonable time, the runs with z̄ < zIP are

certainly manageable. The key advantage is that the critical run with z̄ = zIP

(equivalent to using an external upper bound UB = zIP + 1) can be much

faster than a BBA run without any external upper bound. This potential

benefit is further amplified by the variable fixing technique described next.

• A crucial improvement was the fixing of variables by conditional Lagrangian

bounds or Lagrangian reduced costs, as the authors called it. Let ξk∗(π, j),

j ∈ [J ], be the value of an optimal solution of (5.46) with the additional

constraint xkj = 1. The difference c̄kj (π) = ξk∗(π, j)−ξk∗(π) is the “Lagrangian
reduced cost” of variable xkj with respect to the multipliers π. It can be used

for fixing variables to zero. For example, consider the root node near-optimal

multipliers πr which obtained zroot = L(πr). If zroot + c̄kj (π
r) > z̄ then job j

can not be assigned to machine k in any solution that costs z̄ or less. A similar

reasoning may be used for fixing variables to one. Fixing may be performed

on all BBA nodes. Variables fixed at a certain node S remain fixed for the

subtree rooted at S.

The naive way of computing ξk∗(π, j) values by solving Binary Knapsack prob-

lems, one for each j ∈ [J ], would be too time-consuming. Instead, the authors

used the method proposed in Karabakal et al. [1992] for computing all those

J values in O(JWk) time by Dynamic Programming. The standard Binary

Knapsack DP is run twice, first using the forward recursion and a second time

using the backward recursion. Then, the values ξk∗(π, j) are readily obtained

by concatenating partial forward and backward solutions. “Smart fixing tech-
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niques”, like the ones proposed in Tanaka et al. [2009], Irnich et al. [2010],

Pessoa et al. [2010], Pecin et al. [2017b], Sadykov et al. [2021], Bianchessi et al.

[2024], Yang [2024], described in depth in Chapter 11, play an important role

in advanced BCPAs for problems like vehicle routing or machine scheduling.

• The LR-method in Posta et al. [2012] adopts a very simple branching scheme:

select the job j with the largest multiplier πj such that not all xkj variables

are fixed, and branch on each unfixed machine, thus creating up to K children

nodes. The Binary Knapsack subproblems (excepting the special DP runs for

computing reduced costs) are solved using Pisinger’s MINKNAP code (see

Note 4.6). Algorithm [B]TT/OBP is restricted to 100 iterations on non-root

nodes.

Some computational results in Pigatti et al. [2005], Avella et al. [2010], Posta

et al. [2012], Pessoa et al. [2020] are reproduced in Table 5.1, the reported times (in

seconds) are the original ones, obtained in different processors. Considering those

differences and also results in many other instances not reproduced here, it can be

concluded that the LR-based method in Posta et al. [2012] often obtains the best

performance. However, it is interesting that the CG-based methods, even the simple

BPA in Pigatti et al. [2005], can be better in instances with few jobs per machine,

like D-20-100, for reasons that will be explained in the next section.

Table 5.1: Comparison of times (in seconds) on selected GAP instances

Instance zLP zM zIP
Pigatti Avella Posta Pessoa

(2005) (2010) (2012) (2020)

C-10-200 2795.41 2803.95 2806 266 2.90 2.28 28.6

C-20-200 2376.91 2390.17 2391 55.4 1.80 0.17 14.6

C-20-400 4774.15 4780.18 4782 21.9 9.79 299

D-5-100 6345.41 6349.92 6353 96.3 13.3 1.28 10.7

D-10-100 6323.46 6341.45 6347 818 385 13.4 23.6

D-20-100 6142.53 6176.14 6185 1043 27783 2425 239

D-25-90-e1 5566.11 5617.96 5627 49.7

Source: Pigatti et al. [2005], Avella et al. [2010], Posta et al. [2012], and Pessoa et al. [2020].
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5.5. Assessment of Lagrangian

Relaxation vs Column Generation
If LR and CG are closely related techniques, capable of obtaining the same bounds

by solving the same subproblems, when should one be preferred over the other

in an algorithm for a particular LCOP? By using LR we mean that multipliers

are adjusted using “Lagrangian methods” 3, ranging from the basic Subgradient

Algorithm to highly sophisticated algorithms for non-smooth convex/concave opti-

mization. These methods typically terminate at near-optimality and do not provide

an accurate primal fractional solution (Note 5.2). In contrast, by using CG we mean

that multipliers/dual variables are obtained by solving RMLPs. CG is often per-

formed until optimality. But even if it is stopped a bit earlier, an accurate primal

fractional solution is a by-product.

During the 1970s and the 1980s, LR was far more popular than CG as a tool

for obtaining strong lower bounds for LCOPs. One explanation may be that not

everyone at that time had access to high-quality linear programming packages to

solve RMLPs. In contrast, basic LR methods, like the Subgradient Algorithm, could

be implemented in a few dozen lines of FORTRAN code. Another explanation may

be the influence of the works by Held and Karp on the TSP, which obtained in-

comparably better results with LR. The reasons for that particular CG failure were

poorly understood, which led to widespread skepticism over general CG.

Today, with the benefit of more than five decades of research on both techniques,

we can identify three key factors to consider when deciding between LR and CG:

1. Number of Subproblems. Situations where the LS does not decompose into

multiple (distinct or identical) subproblems are problematic for CG conver-

gence and possibly much more suited to LR methods. More generally, having

3Lemaréchal [2001] laments that CG-based algorithms are not usually presented as LR. In his

words: “any formulation in terms of CG can be done in terms of LR (and conversely). We believe

that this is important because LR – duality theory — mostly calls for fairly simple concepts. By

contrast, CG has to call for the often fussy language of linear programming”. Indeed, he views CG as

nothing other than LDPs solved using the cutting plane algorithm, and therefore, as a LR method.

While this observation is technically correct, CG has advanced so much and created so many unique

characteristics that it is more productive to consider it a distinct technique. Nevertheless, research

on modern Branch-Cut-and-Price algorithms continues to draw heavily from its Lagrangian origins.
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only a few subproblems favors LR while having many subproblems is likely

good for CG convergence. A partial explanation lies in what we have called

the “magic of multiple subproblems” in Section 5.2.2: the subproblem solu-

tions from past iterations stored in the RMLP as generated variables combine

into the equivalent of many supergradients (which correspond to constraints

in the RLDP), as in the example of Figure 5.4b. On the other hand, standard

LR methods concatenate the subproblem solutions of the current iteration to

obtain a single supergradient. The number of subproblems also plays a very

important role in the next factor.

2. The magnitude of the number of variables in the MLP. The CGA

is essentially a primal simplex. As mentioned in Note 1.8, the typical (not

the worst-case) number of simplex iterations until convergence grows linearly

with the number of rows, but much more slowly with the number of columns.

Indeed, by solving the pricing step using auxiliary optimization subproblems,

CG allows the solution of LPs with a huge number of columns. However,

it is still quite expected that enormous differences in the magnitude of p ≡∑
k∈[K] |Qk| may lead to significant differences in performance; that the CGA

will take less iterations for solving MLPs with “only” p = 1010 columns than

those with p = 1080 4.

This is not a speculation. It is a fact observed by CG practitioners over a wide

range of applications. For example, consider the CVRP. For instances where

the capacities are small with respect to the demands, so routes can not visit,

say, more than 10 customers, p is only “moderately huge”. In those instances

even a standard (i.e., not improved by stabilization techniques) CG has no

convergence problems. However, if capacities are large enough to allow routes

with a few dozen customers, the number of possible routes becomes “really

huge” and the convergence of standard CG is much slower. On routing with

time windows, as is known since the 1980s (see Note 4.19), when the time

windows are narrow the number of possible routes is only “moderately huge”

(even if there are still routes with many customers) and CG is fast; when they

are wide CG can be slow.

To make things more concrete we report an experiment in Pigatti et al. [2005]

4This figure matches the estimated number of atoms in the observable universe.
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with a standard non-stabilized CGA (RMLP initialized with artificial vari-

ables, exact pricing in all iterations using MINKNAP) on finding the exact

bound zM on six GAP instances. Those D-class instances are very tight and

each of the K machines should receive about the same fraction of the J jobs

in a feasible solution. The number of possible columns having exactly J/K

jobs is K
(

J
J/K

)
. We include that expression (which does not appear in Pigatti

et al. [2005]) in Table 5.2 as a gross indicator of the relative differences in the

magnitude of p in each MLP. As can be seen, the magnitude of K
(

J
J/K

)
(or

simply the number J/K) predicts well whether the unstabilized CG will have

convergence issues or not. The number J/K is also an indicator of the average

number of non-zeros in the RMLP columns. Sparse RMLPs are solved faster

than dense ones, a fact that also has some influence on total CG time.

Table 5.2: The order of magnitude of the number of columns in the
MLP helps to predict the number of iterations in a standard CGA for
finding the exact zM.

Instance J/K K
(

J
J/K

)
zM

Unstabilized CG

iters cols time (s)

D-20-100 5 1.5× 109 6176.14 77 1469 0.79

D-10-100 10 1.7× 1014 6341.45 168 1587 1.98

D-20-200 10 4.4× 1017 12229.66 224 4260 26.12

D-5-100 20 2.7× 1021 6349.92 678 3156 18.71

D-10-200 20 1.6× 1028 12425.61 839 7239 181.25

D-5-200 40 1.0× 1043 12740.04 4139 19007 6610.31

Source: Pigatti et al. [2005].

In contrast, LR methods do not seem to be affected by a “really huge” number

of LS solutions. Keep in mind that Lagrangian multipliers were first devised

for non-linear differentiable problems where the number of LS solutions is infi-

nite! Let us consider the LR TSP method in Held and Karp [1971]. The largest

solved instance had n = 64 cities, leading to 63!/2 = 1087 possible tours and

even more 1-trees (all tours are 1-trees). Of course, the vast majority of those

1-trees are dominated, in the sense of not being optimal solutions of the LS

for any multiplier π. However, the non-dominated solutions are still so numer-

ous that they define a piecewise linear LDF that is “almost differentiable”,

something similar to what is schematically depicted in Figure 5.7a. In such
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situations, LR methods, in the Held-Karp case even the basic Subgradient Al-

gorithm, can work much better than CG. On the other hand, situations where

the LSs are defined by a not-so-huge number of non-dominated solutions, as

schematically depicted in Figure 5.7b, are better for CG. Note that we do not

know how to even estimate the number of non-dominated solutions (indeed,

many columns in a MLP can never appear in a RMLP, unless heuristic pric-

ing is used, because the associated solutions are never optimal in the pricing).

This is why we use p as a proxy in our guidelines.

By the way, the fact that CG approaches suffer when the number of columns

is enormous is consistent with the consensus that on typical non-linear dif-

ferentiable problems, the cutting plane algorithms (which in those cases are

equivalent to a CG over an MLP having infinite columns) are usually not

the best option. The exceptions are cases where the subproblem can be de-

composed into many parts, so the cutting plane method may profit from the

“magic of multiple subproblems”. An example of that situation can be found

in Aroztegui and Pessoa [2024].

3. Strength of the bound. Having fewer subproblems and LSs formed by an

enormous number of linear pieces makes CG slow. The convergence problem

can be mitigated by dual stabilization techniques, but not eliminated. That

would lead to preferring LR methods in many situations, perhaps even in the

majority of cases. However, there is a third factor that may tip the scales in

favor of CG: the strength of the bound zLD = zM.

Suppose that those bounds are excellent, so the gap zIP − zLD can be closed

by a LR-based BBA (possibly together with some Lagrangian reduced cost

fixing scheme) with a tree search of moderate size. In such situations, LR is

often the best choice. As examples, we have the TSP method by Held and

Karp [1971] on not-so-large instances and the GAP method by Posta et al.

[2012] on most instances.

But what to do if the gap is larger and can not be closed in a reasonable

time? The most standard way of improving a bound is by adding cuts. This

is complicated in a LR context. Let us first consider robust cuts defined over

the original variables. Separating such cuts requires good approximations of

a primal fractional solution, something that is not so easy to obtain in a LR

context (Note 5.2). The alternative of separating over integral LS solutions,
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in the so-called Relax-and-Cut methods, has its limitations (Note 5.3). But

what about non-robust cutting over the generated variables? As far as we

know, there is nothing equivalent to that in LR. For example, consider the

CVRP bounds zM obtained by CG from solving (4.29). Those bounds are not

so good, yielding typical gaps of around 3-5%. LR methods would be faster

than CG in approximating those bounds on instances with long routes, but

the resulting LR-based BBA algorithm (similar to the one in Christofides et al.

[1981]) would not be competitive. Advanced BCPAs for the CVRP use both

robust and non-robust cuts to obtain much smaller root gaps to solve much

larger instances.

ρ

L(ρ)

(a) Good for LR.

ρ

L(ρ)

(b) Good for CG.

Figure 5.7: Impact of the number of linear pieces in a LDF.

5.6. Case Study: Parallel Machine

Scheduling
Scheduling refers to problems where the goal is to allocate resources (like machines)

over time in order to execute tasks in the most efficient way. These problems are

prevalent in various industries and disciplines, including manufacturing, project

management, and computer science. This section describes some progress brought

251



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

by both CG-based and LR-based methods in the exact algorithms for solving the

following family of scheduling problems:

Definition 5.1: Parallel Machine Scheduling Problem (PMSP). Instance:

J jobs and K identical machines; integer processing times pj and cost functions

fj(Cj) over job completion time, j ∈ [J ]. Solutions: scheduling of jobs in the ma-

chines, perhaps introducing idle times between jobs. Each machine can process

without preemption at most one job at a time. Goal: minimize total scheduling

costs.

The generality of the cost function permits viewing many classical scheduling

problems as particular cases of the PMSP. In fact, it includes any single machine

or parallel identical machines problem where the cost function is based on penal-

ties for job earliness or lateness (possibly including an infinity penalty for a job

started before its release date or finished after its deadline). For a typical exam-

ple, in the weighted-tardiness scheduling problem, each job j ∈ [J ] has a due

date dj and a weight wj , and the cost function of job j is defined as f(Cj) =

wj max{0, Cj − dj}. In the three-field notation [Graham et al., 1979], this problem

is referred to as 1||
∑

wjTj for the single machine case (already strongly NP-hard)
and as P ||

∑
wjTj for the parallel identical machines case. Compact formulations

for the PMSP use binary variables to indicate job sequence and continuous variables

to represent completion times. The big-M constraints linking those variables make

them notoriously weak. Many instances with only 20 jobs may not be solved by a

general MIP solver.

Much stronger pseudo-polynomial formulations do exist. Assume that there is

an optimal solution where all jobs are processed in a time horizon ranging from 0

to T . If the cost functions are monotonically non-decreasing (later job completion

is never better), there are optimal solutions without idle times between jobs in the

same machine. In those cases, which include weighted tardiness functions, T can

be set as ⌊(
∑

j∈[J ] pj − pmax)/K⌋ + pmax, where pmax is the maximum processing

time of a job. The time-indexed formulation proposed in Dyer and Wolsey [1990]

for the single machine case (other time-indexed formulations for other scheduling

problems exist since Bowman [1959]) has O(JT ) binary variables corresponding

to all possible completion times of each job. We present here the version of the

time-indexed formulation where its variables can be interpreted as arc flows. Let
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G = (V,A) be a directed multigraph having vertex-set V = {0, . . . , T} and arc-set

A = ∪j∈[J ]Aj ∪A0 ∪ (T, 0, 0), where Aj = {(t− pj , t, j) | pj ≤ t ≤ T} and A0 = {(t−
1, t, 0) | 1 ≤ t ≤ T}. This interpretation makes the time-indexed formulation similar

to Valério de Carvalho’s CSP formulation. Indeed, the graph G for an scheduling

instance with J = 2, p1 = 2, p2 = 3, and T = 5 is isomorphic to the graph in

Figure 4.11. However, if different jobs have the same processing time then G will

have parallel arcs. The formulation is:

min z =
∑

a=(t−pj ,t,j)∈A, j ̸=0

fj(t)xa (5.47a)

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = 0 v ∈ V (5.47b)

∑
a∈Aj

xa = 1 j ∈ [J ] (5.47c)

x(T,0,0) = K (5.47d)

x ∈ Z|A|
+ . (5.47e)

A variable xa where a = (t−pj , t, j) ∈ Aj can only assume values in B and indicates

whether job j finishes at time t. A variable xa where a = (t−1, t, 0) ∈ A0 represents

how many machines are idle between time t − 1 and t. The return flow variable

x(T,0,0) is fixed to ensure that the solution can be decomposed into K paths between

vertices 0 and T , and each such path corresponds to the schedule of a machine.

van den Akker et al. [2000] proposed a CG approach for single machine schedul-

ing. A DW decomposition of (5.47) that keeps (5.47c) and (5.47d) in the master

yields a subproblem that has a network flow structure. Then, its path+cycle de-

composition results in a formulation where there is a variable for each 0−T -path in

G. Those paths were called pseudo-schedules because, as Constraints (5.47c) were

relaxed, some jobs may appear more than once. Let Q be the set of all pseudo-

schedules, represented as J-dimensional vectors. This means that qj indicates how

many times job j appears in the pseudo-schedule corresponding to q ∈ Q. The
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formulation is:

min
∑
q∈Q

λq (5.48a)

s.t.
∑
q∈Q

qjλq = 1 j ∈ J (5.48b)

λ ∈ Z|Q|
+ . (5.48c)

Its linear relaxation can be solved by the CGA, the pricing subproblem being a

Shortest Path Problem over an acyclic graph. Tests on 1|rj |
∑

wjCj (a variant that

includes release dates and uses the weighted completion time objective function)

instances with 20 and 30 jobs have shown that, despite convergence difficulties,

when processing times were larger, the CGA could be much better than simplex

or interior-point algorithms at solving the linear relaxation of the time-indexed

formulation.

This work is also one of the pioneers (see Note 4.20) on combining CG with the

separation of robust cuts defined over the original formulation, fully describing the

mechanism presented in Section 4.3.2. In their case, the cuts to reinforce (5.47) were

those already used in van den Akker et al. [1999]. However, the authors were not

satisfied with the outcome: “These results are obviously disappointing. We have to

pay a high price for improving the quality of the lower bounds: the computation times

increase significantly (much more so than in standard cutting plane algorithms).

Reoptimizing the linear program after a set of cuts has been added seems to be almost

as hard as solving the original LP (...) If this observation holds in other contexts

as well, this constitutes a major computational drawback of combined column and

cut generation approaches.” As discussed in Section 5.5, nowadays we have a much

better understanding of why that particular CG was so prone to slow convergence

and know ways of mitigating the problem.

Subsequent works also based on the time-indexed formulation produced impor-

tant advances. Avella et al. [2005] applied LR to it, obtaining better results. Later,

Pan and Shi [2007] showed that the time-indexed bound can be exactly computed

by solving a cleverly crafted transportation problem, while Bigras et al. [2008] pro-

posed a CG scheme that improves upon van den Akker et al. [2000] by the use of a

temporal decomposition to improve convergence. The first use of the time-indexed

formulation in an exact algorithm for parallel machines was in Tanaka and Araki
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[2008], where a LR-based BBA for P ||
∑

Tj was proposed. Note that the time-

indexed bound may still leave a significant gap and all exact algorithms based on it

may need to explore large enumeration trees. At that time, single machine instances

with 100 jobs and multiple machine instances with 25 jobs could still be challenging.

However, the breakthrough was soon to be obtained. Sourd [2009], Tanaka et al.

[2009] and Pessoa et al. [2010] independently proposed an even larger pseudo-

polynomial formulation having O(J2T ) variables. Define a directed simple graph

G = (V,A), where V = ∪j∈[J ]Vj ∪ V0 and A = (∪i,j∈[J ],i ̸=jAij) ∪ (∪j∈[J ]A0j) ∪
(∪i∈[J ]Ai0)∪A00∪{((0, T ), (0,−1))}. For each j ∈ [J ], Vj = {(j, t) | 0 ≤ t ≤ T −pj},
while V0 = {(0, t) | − 1 ≤ t ≤ T}. For each i, j ∈ J such that i ̸= j, Aij = {((i, t −
pi), (j, t)) | pi ≤ t ≤ T −pj}; for j ∈ [J ], A0j = {((0, t−1), (j, t)) | 0 ≤ t ≤ T −pj}; for
i ∈ [J ], Ai0 = {((i, t− pi), (0, t)) | pi ≤ t ≤ T}; A00 = {((0, t− 1), (0, t)) | 0 ≤ t ≤ T}.
The formulation, referred to as the arc-time formulation, is the following:

min z =
∑

a=((i,t−pi),(j,t))∈A, i ̸=0

fi(t)xa (5.49a)

s.t.
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = 0 v ∈ V (5.49b)

∑
a∈δ+(Vi)

xa = 1 i ∈ [J ] (5.49c)

x((0,T ),(0,−1)) = K (5.49d)

x ∈ Z|A|
+ . (5.49e)

A variable xa where a = ((i, t− pi), (j, t)) ∈ Aij indicates whether job i finishes at

time t and job j immediately follows it in the same machine. Variables corresponding

to arcs in A0j , for some j ∈ [J ], indicate machine transitions from idle to executing

job j; variables corresponding to arcs in Ai0, for some i ∈ [J ], indicate machine

transitions executing job i to idle; while variables corresponding to arcs in A00

count how many machines that were already idle remained idle. An illustration

of the arc-time formulation for an instance with J = 4, K = 2, p = ( 2 1 2 4 ),

and T = 6 appears in Figure 5.8. The arcs shown correspond to a solution having

machine schedules 3-2-0-1 and 4-0-0 (units of idle time are represented by 0).

The above-presented formulation is only slightly stronger than the time-indexed

formulation: if arcs of format ((i, t − pi), (i, t)) were added to it, they would be-

come equivalent. For example, consider the 1||
∑

wjTj instance with J = 3, p =
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0,-1

4,0 4,1 4,2

3,0 3,1 3,2 3,3

2,0 2,1 2,2 2,3 2,4 2,5

1,0 1,1 1,2 1,3 1,4

0,0 0,1 0,2 0,3 0,4 0,5 0,6

Figure 5.8: Graph for the Arc-Time formulation.

( 100 300 200 ), d = ( 200 300 400 ), and w = ( 6 3 2 ). Its optimal solution is

the schedule 1-2-3 with cost 700. The linear relaxation of the time-indexed for-

mulation yields a fractional solution which is the half-half linear combination of

pseudo-schedules 1-1-3-3 and 2-2, with a cost of 650. Pseudo-schedules that repeat

the same job immediately are not possible in the arc-time formulation, which would

yield the optimal integer solution for that instance. However, consider including

additional jobs 4 and 5 with zero weights, arbitrary deadlines, and unit processing

times in that instance. The linear relaxation of the arc-time formulation would yield

a fractional solution which is the half-half linear combination of pseudo-schedules

1-4-1-3-4-3 and 2-5-2-5, with a cost of 657.5 (the short jobs are being used to circum-

vent the impossibility of re-executing the same job consecutively). What makes the

arc-time formulation worthy of the very significant increase in size are the following

results:

Theorem 5.8: Let i and j be jobs in [J ] such that i < j and let ∆ = (fi(t) +

fj(t + pj)) − (fj(t − pi + pj) + fi(t + pj)). If ∆ > 0 arc ((i, t − pi), (j, t)) can be

removed from A; otherwise arc ((j, t− pi), (i, t− pi + pj)) can be removed.

Proof. For any given schedule, swapping two consecutive jobs in the same ma-

chine does not affect the rest of the scheduling. Therefore, a schedule where j follows
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i at time t can be compared with the schedule where i and j are swapped (which

means that i follows j at time t− pi + pj). If ∆ > 0 the first schedule is worse than

the second, so ((i, t − pi), (j, t)) never appears in an optimal solution. Otherwise,

the first schedule is at least as good as the second, so there is an optimal solution

not using ((j, t− pi), (i, t− pi + pj)).

A similar reasoning proves the following:

Theorem 5.9: Let j be a job in J and let ∆ = fj(t) − fj(t + 1). If ∆ > 0, arc

((j, t− pj), (0, t)) can be removed from A; otherwise ((0, t− pj), (j, t− pj + 1)) can

be removed.

Those reductions remove half of the arcs from graph G. However, the really

important gain is drastically reducing the number of paths in G that correspond

to pseudo-schedules that are not proper schedules, making the arc-time formulation

much stronger. In the previous example with 5 jobs, the lack of arc ((4, 100)(1, 101))

eliminates pseudo-schedule 1-4-1-3-4-3 and the lack of arc ((5, 300)(2, 301)) elimi-

nates 2-5-2-5. Table 5.3 compares the time-indexed and the arc-time gaps over the

weighted-tardiness OR-Lib instances, for K ∈ {1, 2, 4} and each J ∈ {40, 50, 100}.
Each row in that table shows average results over 125 instances having integer

processing times uniformly distributed between 1 and 100.

Table 5.3: Comparison of gaps (1||
∑

wjTj and P ||
∑

wjTj)

J K
Time-indexed Arc-time Arc-time + cuts

Avg. gap (%) Avg. gap (%) Avg. gap (%)

40 2 1.533 1.243 0.042

4 0.544 0.406 0.200

50 2 0.535 0.487 0.090

4 0.529 0.489 0.274

100 1 0.540 0.023 0.000

2 1.801 0.688 0.422

4 0.505 0.493 0.362

Source: Pessoa et al. [2010]

• Looking at the line corresponding to J = 100 and K = 1, we see something
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amazing. The time-indexed formulation produces an average gap of 0.54%,

which is quite good but may still lead to big search trees in a BBA. However,

the arc-time formulation yields an average gap of only 0.023%! This can be

explained. When K = 1, the time-indexed formulation only has a positive

gap due to the existence of the non-proper pseudo-schedules. When those are

nearly eliminated in the arc-time formulation the gap drops to almost zero.

To make an analogy with another single subproblem case, the Held-Karp TSP

bound only has a positive gap because there are 1-trees that are not proper

tours. If one could somehow forbid most of those non-proper 1-trees in the

subproblem the gap would drop to almost zero too.

• The gap improvements obtained by the arc-time formulation on instances with

K = 2 or K = 4 are significant but not so dramatic. Using an analogy with

another case where there are multiple identical subproblems, this happens

for the same reason that makes the CVRP CG bounds not drop to zero if

only elementary routes are priced. In multi-machine scheduling, the partial

single-machine schedules priced in the arc-time formulation, even if they do

not repeat jobs, may combine into fractional solutions with a significant gap.

However, the very extended arc-time formulation provides “richer” variables

that make it easier to find good robust cuts (Note 3.17). The algorithm in

Pessoa et al. [2010] takes advantage of that and separates effective cuts, as

also seen in Table 5.3.

Despite the good bounds, the practical use of the very large arc-time formulation

depends a lot on efficient fixing by Lagrangian reduced costs, to make its size more

tractable. Tanaka et al. [2009], Pessoa et al. [2010] (and also Irnich et al. [2010] in

a different context) independently rediscovered the principle that can be found in

Karabakal et al. [1992] that such reduced costs can be computed by running the

DP recursion twice, first using the forward recursion and a second time using the

backward recursion. Then, the reduced costs are readily obtained by concatenating

partial forward and backward solutions. In the arc-time formulation, this is partic-

ularly efficient: one can compute in O(J2T ) time Lagrangian reduced costs for all

the O(J2T ) variables!

Those advances led to two families of algorithms that are still the dominant
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exact approaches for the PMSP 5:

• Single machine case. The algorithm in Tanaka et al. [2009] for single ma-

chine scheduling without idle times dualizes (5.49c) and solves the resulting

LDP by a specially tailored Subgradient Algorithm that has six parameters

in its step size calculation. The LSs are Shortest Path Problems over graph

G, which can be solved in O(J2T ) by Dynamic Programming. However, the

procedure is combined with effective primal heuristics and, due to the ex-

traordinary strength of the arc-time formulation, manages to quickly fix most

variables by Lagrangian reduced costs, reducing the time to solve subsequent

LSs, which become easier after each iteration. The algorithm does not per-

form branching. Instead, it closes the very small possible gaps by Successive

Sublimation Dynamic Programming (SSDP) [Ibaraki and Nakamura, 1994].

The method detects that some jobs are appearing more than once in some

LS solutions and changes the subproblem in order to forbid that. Of course,

this creates additional states in the Dynamic Programming, making it harder.

However, those increases in complexity turn out to be very manageable be-

cause the fixings already made the underlying graph G very sparse. Indeed,

stronger subproblems lead to stronger bounds that lead to more fixing that

allows even stronger subproblems, and so on.

Table 5.4 presents the results in Tanaka et al. [2009] for 1||
∑

wjTj instances

with up to 300 jobs. All rows are averages over 125 machines. The table

provides comparisons with Pan and Shi [2007] and Pessoa et al. [2008] (the

technical report version of Pessoa et al. [2010] that includes single machine

results obtained by its BCP over the arc-time formulation). The times are in

seconds and are taken directly from the sources, without any corrections due

to machine speed (as those sources are nearly contemporaneous, those differ-

ences are not significant). The results of Tanaka et al. [2009] are spectacular.

Note that Pan and Shi [2007] was already a major improvement upon previous

exact algorithms. This big “LR success” happened in a context that gathers all

the conditions listed in Section 5.5 as favorable to that technique: single sub-

5Other families of scheduling problems, in particular those where each job has to be processed

at a sequence of machines, like the notoriously hard job-shop scheduling, are better handled by

other techniques.
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Table 5.4: Single machine results (1||
∑

wjTj)

Pan
(2007)

Pessoa
(2008)

Tanaka
(2009)

J
Avg.

time (s)
Avg.
nodes

Root
gap (%)

Avg.
time (s)

Avg.
nodes

Root
gap (%)

Avg.
time (s)

40 69.0 141 0.68 12.1 1 0 0.19

50 142.8 416 0.74 28.1 1 0 0.39

100 1811 18.8K 0.52 648.5 2.03 0.0013 6.42

150 26.12

200 74.24

250 170.36

300 353.61

Source: Pan and Shi [2007], Pessoa et al. [2008], Tanaka et al. [2009]

problem, enormous number of LS solutions, and very tight Lagrangian bounds

(no need for cutting). The approach was extended in Tanaka and Fujikuma

[2012] for single machine scheduling with idle times. The authors replace the

Subgradient Algorithm with a more sophisticated Conjugate Subgradient. The

possibility of idle times makes the problems harder but the resulting LR-based

method is still very consistent in solving instances with up 200 jobs in a short

time. The source codes of those methods are available at Tanaka [2016].

Tanaka and Araki [2013] deals with single machine scheduling with sequence-

dependent setup times. Those problems are significantly harder and the au-

thors introduce the possibility of branching (instead of only doing SSDP) for

solving some instances.

• Multiple machine case. The BCPA in Pessoa et al. [2010] also works over

the arc-time formulation. CG convergence is helped by dual smoothing sta-

bilization [Wentges, 1997] (the authors were not aware of that article and

claimed in Pessoa et al. [2008] that they were using an original technique. The

mistake was corrected in Pessoa et al. [2010]). Only robust cuts are separated:

the Extended Capacity Cuts first proposed in Uchoa et al. [2008]. Those cuts

take advantage of the extended arc-time formulation and can not be expressed

over the variables of the time-indexed formulation. Fixing by Lagrangian re-

duced costs is essential to the BCPA performance. However, as the gaps of the

arc-time formulation for multiple machines are not as tight, fixing is not so fast
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and not so powerful as happens in Tanaka et al. [2009]. Indeed, the proposed

method has an alternative that, if at the end of the root node there remains

no more than 200K arc-time variables, the residual formulation (5.49), plus

the separated Extended Capacity Cuts, is given to a MIP solver that finishes

the optimization. Sometimes this is faster than performing the full BCPA.

The algorithm in Pessoa et al. [2010] could solve all the tested P ||
∑

wjTj

and P ||
∑

Tj instances with up to 50 jobs and having from 2 to 6 machines.

It could also solve the majority of the tested P ||
∑

wjTj instances with 100

jobs.

More recently, Oliveira and Pessoa [2020] proposed an improved BCP algo-

rithm that separates additional cuts and is also able to project the arc-time

formulation (with most of its variables fixed by reduced costs) onto the time-

indexed variable space, to generate more compact IPs to be given to the MIP

solver. Bulhões et al. [2020] generalized the arc-time approach and created a

BCPA that can handle a wide variety of parallel machine scheduling prob-

lems, including situations where job processing times depend on the machine,

sequence-dependent setup times, among others. That BCPA also uses non-

robust cuts. In all those multiple machine scheduling problems, the current

superiority of CG-based approaches over LR-based approaches (assuming that

both would solve the same subproblems) is explained by the fact that the

known base formulations only provide reasonably good bounds and cutting

(robust or non-robust) is needed.

The connection between Lagrangian Relaxation and Column Gen-

eration is essential for a deeper understanding of the later tech-

nique. In fact, many advanced techniques in CG for improving con-

vergence and for fixing variables draw heavily from that connection.

It is also important to be able to recognize the situations where LR

methods are likely to outperform CG and may completely replace

it.
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Notes

5.1. Lagrange multipliers, introduced in the 19th century [Lagrange, 1806], have

long been a standard technique for constrained optimization of differentiable

functions in calculus. Their application to non-differentiable (or non-smooth)

functions is more modern. Naum Z. Shor proposed a subgradient algorithm for

solving large-scale dual network transportation problems by reducing them to

maximizing piecewise linear concave functions [Shor, 1962]. He and colleagues

at the V.M. Glushkov Institute of Cybernetics in Kyiv, Ukraine, applied simi-

lar methods with decomposition schemes to various planning problems. Polyak

[1978] and Rubinov [2002] describe some of those early Soviet-era develop-

ments. Everett III [1963] realized that Lagrangian multipliers could be ap-

plied to many LCOPs. The approach gained prominence following Held and

Karp [1971] influential work on the TSP. Fisher [1981] already reports nu-

merous successful applications soon after. Interestingly, the term Lagrangian

Relaxation is quite recent and was coined in Geoffrion [1974]. Beasley [1993]

offers an excellent tutorial for beginners, while Guignard [2003] provides a

more advanced treatment. The technique is also covered in integer program-

ming textbooks like Wolsey [2020]. There is a vast literature on methods for

solving Lagrangian Dual Problems and, more broadly, optimizing non-smooth

convex/concave functions. We have no hope of even naming all the families

of relevant methods and direct readers to surveys and compared studies such

as Lemaréchal [2001], Briant et al. [2008], Oliveira and Sagastizábal [2014],

Frangioni et al. [2017], and Bragin [2024].

5.2. Recovering a primal fractional solution. When DW reformulation and

CG are applied to an IP, an optimal fractional solution x∗ of its MLP re-

laxation is readily obtained using (2.9). For example, in problem (5.18) the

optimal fractional solution is x∗ = 1/3 ( 3 0 )+2/3 ( 1 1 ) = ( 5/3 2/3 ). In gen-

eral, an optimal fractional solution may not be unique. Anyway, the knowledge

of one such solution is assumed in standard BP and BCP algorithms (as in

standard LP-based BB and BC algorithms) for choosing a branching variable

and separating cuts.
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However, if one solves the equivalent LDP using typical Lagrangian methods

the situation is different. Indeed, the vast majority of successful works that

applied LR to the exact solution of LCOPs, including Held and Karp [1971],

Posta et al. [2012], and all works cited in Fisher [1981] and Beasley [1993],

ignore the primal fractional solutions (in the sense of simply not trying to

find them) and instead propose branch rules based on (π′ ρ′) and x′, which

are the multipliers that obtained the best Lagrangian bound of the node and

the integer solution of the corresponding LS, respectively. We remark that

those multipliers are an approximate LDP solution with L(π′, ρ′) being a bit

smaller than the theoretical node bound zLD and therefore x′ is a somehow

arbitrary solution (it may not even participate in a convex combination of

integer solutions that would produce an exact x∗) that depends on the chosen

stopping criterion. So, there is no guarantee that a branching using only that

information will indeed cut an optimal fractional solution in all children nodes.

If this does not happen in a certain child node, its final bound can not be larger

than the parent theoretical bound zLD. Actually, some of those branch rules

include look-ahead mechanisms where several candidate variables are roughly

evaluated to avoid too bad choices.

The Volume Algorithm [Barahona and Anbil, 2000] is an advanced Lagrangian

method (see Bahiense et al. [2002] for an analysis of it). One of the Volume

Algorithm features, already announced in the title of Barahona and Anbil

[2000], is that it can produce primal fractional solutions. Some authors like

Lemaréchal [2001] and Anstreicher and Wolsey [2009] clarified that it was

known for a long time (in “community folklore” but also in Shor [1985] and in

Larsson et al. [1999]) that other Lagrangian methods, even the basic Subgra-

dient Algorithm, can produce primal fractional solutions. Indeed, in the the

main loop of Algorithm 3, at iteration t, we may compute a weighted average:

x̂ =

∑t
k=1wkx

t∑t
k=1wk

, (5.50)

where the last iterations receive more weight. It can be proved that even if

weights are unitary, under the typical conditions that make the algorithm

converge to an optimal LDP solution, x̂ converges to an optimal primal solu-

tion. This result should be looked at with some care. Even when the current
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LDP solution is already near-optimal, x̂ may still be a poor approximation

of an optimal primal solution. One of the reasons is that the primal integer

solutions generated in the early iterations only introduce noise in the esti-

mate (5.50). But even if one disregards the earlier solutions, convergence can

still be slow. Consider problem (5.18) and Figure 5.3a. The Subgradient Al-

gorithm will need to evaluate many values of ρ in the vicinity of the optimal

ρ∗ = 1/3 until it slowly “realizes” that point ( 1 1 ) appears two times more

often than point ( 3 0 ) and so that (5.50) converges to a value very close to

x∗ = 1/3 ( 3 0 ) + 2/3 ( 1 1 ) = ( 5/3 2/3 ). Imagine for a moment how many

iterations the Subgradient Algorithm would take until x̂ is a good approx-

imation in a large problem where x∗ is a combination of dozens of integer

solutions! More sophisticated Lagrangian methods, like the Bundle methods

or the Volume algorithm itself, sample the vicinity of the optimal LDP so-

lutions more systematically and can produce better primal estimates more

quickly. Yet, those methods are usually stopped before those primal estimates

have become very precise.

The question is: are precise primal fractional solutions really necessary in an

exact LR-based algorithm?

• For the sake of branching the answer is “no”. As discussed in Note 3.10,

the actual fractional value of a variable (as long as the variable is indeed

fractional!) is a very poor predictor of its performance as a branching

candidate. Suppose that one branches over a variable xj such that x̂j =

0.5 but x∗j = 0.4. That difference is likely to be irrelevant due to the two-

sided nature of branching: the improvement in the ≤ child node may be

smaller than expected but this is compensated by a larger than expected

improvement in the ≥ child node. To improve branch quality it is much

better to invest in look-ahead or even full strong branching mechanisms

than in obtaining accurate primal solutions.

• For the sake of cutting the answer is “probably”. Cut separation is a more

critical and one-sided procedure: estimation errors in x̂ may lead to the

separation of cuts that are not violated and there is no compensation

for it. So, in situations where significant duality gaps need to be reduced

by cutting it may be advisable to use a hybrid approach, applying a LR

method to get a near-optimal LDP solution and then switching to a CG
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(hot-started with the columns corresponding to the last generated points

and also using some tricks described in Chapter 7) to obtain an exact

x∗, even if this takes more time. A discussion on that can be found in

Section 3.3 of Pessoa et al. [2010].

5.3. Relax-and-Cut. Consider the IP (5.9), and let (π′ ρ′) and x′, be near-

optimal Lagrangian multipliers and the corresponding LS integer solution,

respectively (so, L(π′,ρ′) = L(x′,π′,ρ′)). To obtain better bounds, Relax-

and-Cut separates valid inequalities cutting x′ and immediately dualizes them,

so they do not change the structure of the LSs.

The approach has its roots in the LR algorithm by Balas and Christofides

[1981] for the asymmetric TSP, where the degree constraints are kept in the

LS (which can then be solved as an easy Assignment Problem) and the Sub-

tour Elimination constraints are dualized. As there is an exponential number

of such constraints, this has to be done dynamically: given the current assign-

ment solution x′, its subcycles are identified and the corresponding Subtour

Elimination Constraints receive positive multipliers, so those subcycles are

less likely to appear in the next iterations.

The Relax-and-Cut technique was advanced in Lucena [1992] and Escudero

et al. [1994], the latter work proposing its name. Discussions on it can be

found in Guignard [2003], Lucena [2005] and Ralphs and Galati [2005]. As

observed by them, for a typical NP-hard LCOP, the separation problems for

most known families of valid inequalities are also NP-hard (usually, only the

simplest families of inequalities have polynomial exact separation). This means

that the problem of finding an inequality in one of those families that cuts

a given arbitrary fractional point x∗ often has to be handled by separation

heuristics. However, the separation problem restricted to integer points x′

may become much easier, even polynomial. This is a feature of Relax-and-Cut

schemes.

We view Relax-and-Cut as a potentially effective but heuristic separation

procedure, not only in the sense that cuts violated by a primal fractional

solution x∗ may be missed but also in the sense that there is no guarantee that

a cut that is violated by the integer point x′ also cuts x∗. This is not suprising

after one realizes that turning NP-hard separation problems into polynomial
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ones is perhaps “too good to be true”. There are some other caveats:

• It is only possible to cut an integer point x′ if it is not a feasible so-

lution of (5.9) (or equivalently, if x′ would correspond to a non-proper

variable in a CG scheme). If so, x′ violates some original constraints that

were dualized. One should be careful to avoid “cuts that are falsely vio-

lated”. Consider for example the Held-Karp LR method for the TSP. The

x′ solutions correspond to 1-trees, and therefore never violate Subtour

Elimination constraints in format (5.42e). However, they often violate

many Subtour Elimination constraints in format (3.5c)! This happens

because, as explained in Note 3.13, those two formats are only equiva-

lent for solutions that satisfy the degree constraints (5.42b), which is not

the case, since the HK method dualizes (5.42b). The point is that the

separation of Subtour Elimination constraints, in any format is useless,

in the sense of not leading to bounds stronger than the original bound

zLD. In order to do that, one should try to separate more complex fam-

ilies of cuts like 2-matchings, combs, etc (see Section 3.4.1). In general,

in a LR over the IP (5.9), a cut can only improve the bound zLD if it

cuts the polyhedron given by Ax = b, Dx ≥ d,x ∈ Conv(Int(P )).

• Relax-and-Cut can not be applied to cases where identical subprob-

lems are aggregated and only proper variables are priced. Consider the

CVRP bound zM obtained by CG from solving (4.29), assuming that

only elementary routes are priced. A bound very close to the theoret-

ical zLD = zM can be obtained by LR (similarly to what is done in

Christofides et al. [1981] using q-routes). Even if zLD has a fairly large

gap with respect to zIP (which usually happens), all integer x′ vectors

that are LSs solutions correspond to feasible routes. It is not possible to

separate cuts over them! Looking at the situation in more depth, x′ can

be converted into an infeasible integer solution to the original formula-

tion (4.27) having U identical copies of the same route. That solution is

infeasible because it violates the dualized degree constraints (4.27b). Any-

way, such an original solution is still not useful for separating cuts. For

example, any set S ⊂ V+ that does not include vertices in the route cor-

responding to x′ leads to a maximally violated (with zero LHS) Rounded

Capacity Cut (3.6c). Which one should be chosen? The separation algo-

266



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

rithm would be blind and would indeed separate a “random cut” in that

family.

The only alternative for cutting in the above mentioned context would

be to accumulate many successive vectors x′ in a formula similar to

(5.50) to obtain an approximated primal fractional solution. But this has

the difficulties pointed out in the previous note and loses the potential

advantages of doing separation over integer solutions.

Exercises

E5.1. Let UB be the value of the best known solution for the IP min cx subject

to Ax ≥ b, x ∈ Zn
+ and let ρ′ ∈ R1×m

+ be a feasible solution to the dual

of its linear relaxation. Use LR to prove that every integer variable xj ,

j ∈ [n], such that ρ′b + cj − ρ′aj ≥ UB should have value zero in any

improving IP solution.

E5.2. Relax the integrality constraints in (5.36) and consider the resulting con-

tinuous non-linear problem. Apply LR to it, dualizing (5.36b). Solve the

resulting LDP by the cutting plane method, starting from LP (5.38). Use

the fact that subproblems can be solved by closed-form expressions.

E5.3. Project exercise. Implement the Held-Karp 1-tree LR method for the

TSP. Use the Subradient Algorithm with the step sizes suggested in Held

et al. [1974]. Plot the 1-trees from successive iterations and observe if they

can get close to being tours. However, to find proven optimal integer solu-

tions use an estimated primal fractional solution to choose the branching

variables in a binary search tree. Test on small instances from TSPLIB.

E5.4. Project exercise. Implement the Held-Karp 1-tree CG bounding method

for the TSP, as proposed in Held and Karp [1970]. Be patient when running

the CG for larger instances.
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E5.5. Open project exercise. Use LR and the Subgradient Algorithm (or

other more sophisticated Lagrangian method) for implementing a stand-

alone code for solving LPs in format min z = cx subject to Ax ≥ b, 0 ≤
x ≤ u, where A has dimension m × n. Assume that vector u provides

finite bounds to all variables and b ≥ 0, so unboundedness or infeasibility

is not possible. How can you use the resulting near-optimal dual solution to

compute a near-optimal primal solution? Discuss possibilities for “crossing-

over” to a primal basic feasible solution. Compare your code with simplex

and interior-point LP solvers for different instance sizes, starting with small

ones. Try instances with relatively few rows and many columns, like those

arising as linear relaxations of typical set covering problems. Be ready for

defeat, but still have fun!

268



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Part II

Topics in Column Generation



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

270



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Chapter 6

Column Generation Based
Heuristics

6.1. Preliminaries

6.2. Basic Heuristics

6.2.1. Rounding Heuristics

6.2.2. Solving RMLPs as MIPs

6.3. Advanced Heuristics

6.3.1. Diving Heuristics

6.3.2. Ruin-and-Recreate Heuristics

6.3.3. Heuristic Enumeration

6.4. Case Studies

6.5. Assessment of Column Generation for

heuristic solution of COPs
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Chapter 7

Column Generation Convergence

7.1. Managing the Restricted Master LP

7.1.1. RMLP initialization

7.1.2. Pricing policies

7.1.3. RMLP clean-up

7.2. Dual stabilization

7.2.1. Dual feasible cuts

7.2.2. Stabilization by dual smoothing

7.2.3. Stabilization by penalty functions

7.2.4. Master constraint aggregation

7.2.5. Lagrangian hot-start

7.2.6. Solving RMLPs by interior-point methods
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Chapter 8

Advanced Branching

8.1. Advanced Branching Schemes

8.2. Strong Branching for CG
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Chapter 9

The Dynamic Programming
Labeling Algorithm for the RCSP

9.1. Basic Labeling Algorithm

9.1.1. Label Setting vs Label Correcting

9.2. Advanced Labeling Algorithm

9.2.1. Bidirectional Search

9.2.2. Completion Bounds

9.2.3. Advanced Bucket Organization

9.2.4. Multi-dominance

9.3. Elementarity Sets and ng-Paths

277



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

278



O
p
ti
m
iz
in
g
w
it
h
C
ol
u
m
n
G
en
er
at
io
n

Chapter 10

Non-Robust Cuts

10.1. General non-robust cuts

10.2. Limited-memory Rank 1 Cuts

10.2.1. Packing Sets
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Chapter 11

Reduced Cost Fixing and Related
Techniques

11.1. Lagrangian Reduced Cost Fixing

11.2. Column Enumeration

11.3. Solving the Original Reduced Prob-

lem
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Software for Column Generation
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ing Salesman Problem: A Computational Study. Princeton University Press, 2007. doi:

10.1515/9781400841103. 85, 104

J P Arabeyre, J Fearnley, F C Steiger, and W Teather. The airline crew scheduling problem:

A survey. Transportation Science, 3(2):140–163, 1969. doi: 10.1287/trsc.3.2.140. 96
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Vašek Chvátal. Linear programming. W.H. Freeman, 1983. 3, 12

Armin Claus and Nelson Maculan. Une nouvelle formulation du probleme de Steiner sur

un graphe. Technical Report 280, Université de Montréal, Centre de recherche sur les
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Claude Lemaréchal. An extension of Davidon methods to non differentiable problems. In

Michel L. Balinski and Philip Wolfe, editors, Nondifferentiable Optimization, volume 3

of Mathematical Programming Studies, pages 95–109. Springer Berlin Heidelberg, 1975.

ISBN 978-3-642-00764-4. doi: 10.1007/BFb0120700. 231
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Adam N Letchford and Juan-José Salazar-González. Projection results for vehicle routing.

Mathematical Programming, 105:251–274, 2006. doi: 10.1007/s10107-005-0652-x. 199

Amos Levin. Some fleet routing and scheduling problems for air transportation systems.

Technical Report 5, Massachusetts Institute of Technology, Flight Transportation Lab-

oratory, 1968. https://dspace.mit.edu/handle/1721.1/68120 (accessed on August 2024).

196

Benedikt Lienkamp and Maximilian Schiffer. Column generation for solving large scale

multi-commodity flow problems for passenger transportation. European Journal of Op-

erational Research, 314(2):703–717, 2024. doi: 10.1016/j.ejor.2023.09.019. 46, 47, 48

Pedro Henrique Liguori, Ali Ridha Mahjoub, Guillaume Marques, Ruslan Sadykov, and

Eduardo Uchoa. Nonrobust strong knapsack cuts for capacitated location routing

and related problems. Operations Research, 71(5):1577–1595, 2023. doi: 10.1287/o-

pre.2023.2458. 181

John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. An algorithm

for the traveling salesman problem. Operations Research, 11(6):972–989, 1963. doi:

10.1287/opre.11.6.972. 88
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José M Valério de Carvalho. Exact solution of cutting stock problems using column gener-

ation and branch-and-bound. International Transactions in Operational Research, 5(1):

35–44, 1998. doi: 10.1016/S0969-6016(97)00044-0. 154
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